Tag Archives: flexible shaft couplings

China best Ge Flexible Shaft Couplings Ge65 Coupling CHINAMFG

Product Description

 GE Series Shaft Couplings
 

The GE series of flexible couplings consist of 2 machined metal hubs connected by an elastomeric gear ring. The couplings are equally suited to horizontal or vertical shaft applications, providing positive power transmission and absorbing torsional, vibration and impact loads. The standard elastomeric ring is a black thermoplastic rubber of 94 shore A hardness selected for its resistance to 
wear, oil, chemicals, CHINAMFG and hydrolysis, which makes it suitable for tropical climates. Standard couplings can work in environments with temperature range – 40°C to + 125°C and withstand + 150 C for short periods. The teeth of the gear ring are of involute form to prevent high stress concentrations in reduced surfaces, and crowned to avoid edge pressure on the teeth. The circular apertures on each hub are precision-machined to provide positive torque transmission with minimum backlash. 

 

Coupling Selection Method

  • Torque – power [kW] • Speed [r/min]
  • Type of equipment and application
  • Shaft diameters
  • Shaft gaps
  • Physical space limitation
  • Special bore or finish information

Coupling Features

  • Good starting performance can change the load starting of the motor to no-load starting, so as to realize the soft starting of the working machine, reduce the current during starting and reduce the starting energy consumption.
  • Save electric energy and equipment cost, which can solve the unreasonable situation of the big horse-drawn trolley with load starting machine, save the motor capacity, improve the power factor and motor efficiency of the grid, reduce reactive power loss, save electric energy, and simplify the motor starting equipment and reduce equipment cost.
  • The transferred torque can be adjusted, easy to achieve overload protection.When the working machine is overloaded or jammed, the steel ball type safety coupling will slip automatically, which can prevent the motor from burning out and other parts damage.
  • Except for the starting and braking stages, the main and driven parts of the steel ball safety coupling have no speed difference, no friction loss and high transmission efficiency.
  • Nonmetallic elastic elements are adopted in the steel ball type safety coupling, which can compensate the offset of the linked 2 axes within a certain range, with a small amount of buffering and damping.
  • Reliable operation, stable performance, convenient installation, disassembly and maintenance.

Determining the right type of flexible coupling starts with the following analysis of the application:

  • Prime mover type (motor, diesel engine, etc.) of the drive side of the system
  • Actual horsepower and/or torque requirements, not prime motor-rated horsepower (note the range of variable torque caused by periodic or unstable loads, worst-case starting loads,
  • Drive system inertia related to prime mover inertia (data available from equipment supplier)
  • vibration, linear and torsional vibration (experienced supplier or consultant can help you evaluate vibration) shaft-to-shaft deviation;
  • Note the degree of Angle offset (axis is not parallel) and parallel offset (distance between axis centers when axes are parallel but not aligned);
  • Also note whether the drive/driven units share the same floor axial (inside/outside) axial motion,
  • whether they share distance (the distance between the drive end and the driven axis), and any other space-related restrictions.

 

 

Other Couplings:

 

 

We are able to offer a wide range of special couplings, which are based on your samples or drawings.

Due to the refinement of production operations and the high-end technology, we have been able to produce high-quality Rubber Coupling, Trolley Wheel, Flexible Coupling, Flexible Rubber Coupling, Industrial Rubber Coupling, Star Coupling, CHINAMFG type Coupling Spare and other products, widely used in industrial applications.

 

All these products are tested and checked against the set quality parameters before being sent to the customer. This shows that we are willing to provide our customers with updated and perfect product lines to meet their different needs. In addition, we also provide customized solutions to provide customers with a wide range of space, so that they can choose their favorite products according to their needs and requirements.

 

Company Profile&Certifications:

      Now over 100,000 quality filters including compressed air filters, Hydraulic Filters and complete filter housing assemblies at wholesale discounts. We offer OEM products as well as high quality replacements, engineered to precise OEM specifications and guaranteed to match the exact form, fit and function as the original equipment. Our company is committed to continuous innovation and further improvement to create, improve the efficiency and productivity of excellence, to achieve the highest level of reliability and performance.

 

FAQ:

Q1. What is your product range?
A: Our products cover replacement hydraulic filter, Air compressor filters, Compressed air filter element, Heavy truck insert filters, Vacuum pump filters, and Some spare parts for compressors.

Q2. Is customized filter or OEM available? 
A: Yes, just offer your required specifications and drawings.

Q3. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build new molds, but open new mold fee charged, when you place bulk order, the mold fee can return back.

Q4. What’s your terms of packing?
A: Generally, we pack our goods in neutral boxes,outside brown carton cases. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.

Q5. What’s the terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balancing.

Q6. What’s your terms of delivery?
A: (1)FOB (2)CFR (3)CIF.

Q7. How about your delivery time?
A: Generally, under MOQ quantity take 5-7 working days after receiving your advance payment. The specific delivery time depends on models and the quantity of your order.

Q8. What’s your sample policy?
A: ,,,.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Can Shaft Couplings Compensate for Angular, Parallel, and Axial Misalignments?

Yes, shaft couplings are designed to compensate for different types of misalignments between rotating shafts in mechanical power transmission systems. They can handle the following types of misalignments:

  • Angular Misalignment: This occurs when the shafts are not parallel and have an angle between them. Flexible couplings, such as elastomeric, beam, or Oldham couplings, can accommodate angular misalignments by allowing slight angular movement between the shafts while transmitting torque.
  • Parallel Misalignment: This happens when the shafts are not collinear, resulting in axial displacement. Flexible couplings with lateral flexibility, like elastomeric or bellows couplings, can handle parallel misalignment by allowing limited lateral movement between the shafts.
  • Radial Misalignment: Radial misalignment occurs when the shafts have lateral displacement but remain parallel. Flexible couplings, such as jaw or grid couplings, can absorb radial misalignment by permitting some lateral deflection while transmitting torque.

It is essential to note that while shaft couplings can compensate for misalignments to some extent, they do have their limits. The magnitude of misalignment they can handle depends on the type and design of the coupling. Exceeding the specified misalignment capabilities of a coupling can lead to premature wear, reduced efficiency, and possible coupling failure.

Therefore, when selecting a shaft coupling for an application, it is crucial to consider the expected misalignment and choose a coupling that can accommodate the anticipated misalignment range. Additionally, maintaining proper alignment through regular maintenance and periodic inspections is essential to ensure the coupling’s optimal performance and extend its service life.

“`shaft coupling

Explaining the Concept of Backlash and How It Affects Shaft Coupling Performance

Backlash is the angular movement or play between the mating components of a mechanical system when the direction of motion is reversed. In the context of shaft couplings, backlash refers to the free rotational movement between the connected shafts before the coupling transmits torque from one shaft to the other.

Backlash occurs in certain coupling designs that have features allowing relative movement between the coupling’s mating parts. Common coupling types that may exhibit some degree of backlash include elastomeric couplings (such as jaw couplings), gear couplings, and Oldham couplings.

How Backlash Affects Shaft Coupling Performance:

1. Loss of Precision: In applications requiring precise motion control, backlash can lead to inaccuracies and reduced positional accuracy. For example, in CNC machines or robotics, any rotational play due to backlash can result in positioning errors and decreased machining or movement precision.

2. Reversal Impact: When a reversing load is applied to a coupling, the presence of backlash can lead to a brief period of rotational play before the coupling re-engages, causing a momentary jolt or impact. This impact can lead to increased stress on the coupling and connected components, potentially reducing their lifespan.

3. Dynamic Response: Backlash can affect the dynamic response of the mechanical system. In systems requiring rapid acceleration or deceleration, the initial play due to backlash may create a delay in torque transmission, affecting the system’s responsiveness.

4. Noise and Vibration: Backlash can cause noise and vibration in the system, leading to increased wear and potential fatigue failure of components.

5. Misalignment Compensation: In some flexible coupling designs, a certain amount of backlash is intentionally incorporated to allow for misalignment compensation. While this is a beneficial feature, excessive backlash can compromise the coupling’s performance.

Minimizing Backlash:

Manufacturers often design couplings with specific features to minimize backlash. For instance, some gear couplings employ crowned gear teeth to reduce clearance, while elastomeric couplings may have preloaded elastomeric elements. Precision couplings like zero-backlash or torsionally rigid couplings are engineered to eliminate or minimize backlash for applications requiring high accuracy and responsiveness.

When selecting a coupling, it’s essential to consider the application’s specific requirements regarding precision, speed, reversing loads, and misalignment compensation, as these factors will determine the acceptable level of backlash for optimal performance.

“`shaft coupling

Can a Damaged Shaft Coupling Lead to Equipment Failure and Downtime?

Yes, a damaged shaft coupling can lead to equipment failure and downtime in mechanical power transmission systems. Shaft couplings play a critical role in connecting rotating shafts and transmitting power between them. When a coupling becomes damaged or fails to function properly, several negative consequences can arise:

1. Misalignment Issues:

A damaged coupling may no longer be able to compensate for misalignments between the connected shafts. Misalignment can cause excessive vibration, increased wear, and premature failure of bearings and other connected components. Over time, these issues can lead to equipment breakdown and unplanned downtime.

2. Vibration and Shock Loads:

Without the damping properties of a functional coupling, vibrations and shock loads from the driven equipment can transmit directly to the driving shaft and other parts of the system. Excessive vibrations can lead to fatigue failure, cracking, and damage to the equipment, resulting in reduced operational efficiency and increased downtime.

3. Overloading and Torque Transmission:

A damaged coupling may not effectively transmit the required torque between the driving and driven shafts. In applications where the coupling is a safety device (e.g., shear pin couplings), failure to disengage during overloading situations can lead to equipment overload and damage.

4. Increased Wear and Tear:

A damaged coupling can lead to increased wear on other parts of the system. Components such as bearings, seals, and gears may experience higher stress and wear, reducing their lifespan and increasing the likelihood of breakdowns.

5. Reduced System Reliability:

A functional shaft coupling contributes to the overall reliability of the mechanical system. A damaged coupling compromises this reliability, making the system more prone to failures and unplanned maintenance.

6. Downtime and Production Loss:

When a shaft coupling fails, it often results in unscheduled downtime for repairs or replacement. Downtime can be costly for industries that rely on continuous production processes and can lead to production losses and missed delivery deadlines.

7. Safety Hazards:

In certain applications, such as heavy machinery or industrial equipment, a damaged coupling can create safety hazards for workers and surrounding equipment. Sudden failures or uncontrolled movements may pose risks to personnel and property.

Regular inspection, maintenance, and prompt replacement of damaged shaft couplings are essential to prevent equipment failure, minimize downtime, and ensure safe and efficient operation of mechanical systems. It is crucial to address any signs of coupling wear or damage immediately to avoid potential catastrophic failures and costly disruptions to operations.

“`
China best Ge Flexible Shaft Couplings Ge65 Coupling CHINAMFG  China best Ge Flexible Shaft Couplings Ge65 Coupling CHINAMFG
editor by CX 2024-05-13

China Professional FCL Flexible Shaft Couplings for Reducer and Motor

Product Description

SC Transmission FCL Flexible Shaft Couplings for Reducer and Motor

 

Product Description

FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 

As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.

Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Product Parameters

SIZE     D D1 d1 L C n-M kg
  r/min
N.m  
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

 

Company Profile

FAQ

Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Exploring the Use of Elastomeric Materials in Flexible Shaft Couplings

Elastomeric materials play a crucial role in the design and function of flexible shaft couplings. These materials, commonly known as elastomers, are rubber-like substances that exhibit high elasticity and flexibility. They are widely used in various types of flexible couplings due to their unique properties and benefits:

1. Damping and Vibration Absorption:

Elastomeric materials have excellent damping characteristics, meaning they can absorb and dissipate vibrations and shocks. This property is particularly useful in applications where vibration control is essential to protect sensitive equipment and improve overall system performance.

2. Misalignment Compensation:

Flexible shaft couplings with elastomeric elements can accommodate different types of misalignments, including angular, parallel, and radial misalignments. The elasticity of the material allows for limited movement between the shafts while still transmitting torque efficiently.

3. Torsional Flexibility:

Elastomers offer torsional flexibility, which allows them to twist and deform under torque loads. This feature helps to minimize torsional stresses and torsional backlash, making them suitable for applications requiring precise motion control.

4. Shock and Impact Resistance:

Due to their high resilience, elastomers can withstand sudden shocks and impacts without permanent deformation. This property makes them ideal for use in machinery subjected to varying loads or rapid changes in torque.

5. No Lubrication Requirement:

Elastomeric couplings are often maintenance-free because the elastomer material does not require additional lubrication. This reduces maintenance costs and simplifies the overall system upkeep.

6. Electric Isolation:

In certain applications, elastomeric materials can provide electrical isolation between the driving and driven components. This can help prevent the transmission of electrical currents or static charges through the coupling.

7. Corrosion Resistance:

Many elastomers used in couplings are resistant to corrosion, making them suitable for use in challenging environments where exposure to chemicals or moisture is a concern.

8. Easy Installation:

Elastomeric couplings are often designed for ease of installation and replacement. Their flexibility allows for simple and quick assembly onto the shafts without the need for special tools or complex procedures.

Given these advantages, elastomeric materials are popular choices for various flexible shaft couplings, including jaw couplings, tire couplings, and spider couplings. However, it is essential to select the right elastomer material based on the specific application requirements, such as temperature range, chemical compatibility, and torque capacity.

“`shaft coupling

Explaining the Concept of Backlash and How It Affects Shaft Coupling Performance

Backlash is the angular movement or play between the mating components of a mechanical system when the direction of motion is reversed. In the context of shaft couplings, backlash refers to the free rotational movement between the connected shafts before the coupling transmits torque from one shaft to the other.

Backlash occurs in certain coupling designs that have features allowing relative movement between the coupling’s mating parts. Common coupling types that may exhibit some degree of backlash include elastomeric couplings (such as jaw couplings), gear couplings, and Oldham couplings.

How Backlash Affects Shaft Coupling Performance:

1. Loss of Precision: In applications requiring precise motion control, backlash can lead to inaccuracies and reduced positional accuracy. For example, in CNC machines or robotics, any rotational play due to backlash can result in positioning errors and decreased machining or movement precision.

2. Reversal Impact: When a reversing load is applied to a coupling, the presence of backlash can lead to a brief period of rotational play before the coupling re-engages, causing a momentary jolt or impact. This impact can lead to increased stress on the coupling and connected components, potentially reducing their lifespan.

3. Dynamic Response: Backlash can affect the dynamic response of the mechanical system. In systems requiring rapid acceleration or deceleration, the initial play due to backlash may create a delay in torque transmission, affecting the system’s responsiveness.

4. Noise and Vibration: Backlash can cause noise and vibration in the system, leading to increased wear and potential fatigue failure of components.

5. Misalignment Compensation: In some flexible coupling designs, a certain amount of backlash is intentionally incorporated to allow for misalignment compensation. While this is a beneficial feature, excessive backlash can compromise the coupling’s performance.

Minimizing Backlash:

Manufacturers often design couplings with specific features to minimize backlash. For instance, some gear couplings employ crowned gear teeth to reduce clearance, while elastomeric couplings may have preloaded elastomeric elements. Precision couplings like zero-backlash or torsionally rigid couplings are engineered to eliminate or minimize backlash for applications requiring high accuracy and responsiveness.

When selecting a coupling, it’s essential to consider the application’s specific requirements regarding precision, speed, reversing loads, and misalignment compensation, as these factors will determine the acceptable level of backlash for optimal performance.

“`shaft coupling

Advantages of Using Shaft Couplings in Connecting Rotating Shafts

Shaft couplings offer several advantages in connecting rotating shafts in mechanical power transmission systems. These advantages contribute to the efficiency, reliability, and versatility of various industrial applications. Here are the key benefits of using shaft couplings:

1. Misalignment Compensation:

Shaft couplings can accommodate different types of misalignment, including angular, parallel, and axial misalignments. This capability ensures that the connected shafts can continue to operate smoothly even if they are not perfectly aligned, reducing stress on the equipment and minimizing premature wear.

2. Vibration Damping:

Some types of shaft couplings, particularly those with flexible elements, offer vibration damping properties. They can absorb shocks and vibrations caused by uneven loads or sudden changes in operating conditions, improving the overall reliability and lifespan of the connected machinery.

3. Shock Absorption:

Shaft couplings with flexible elements can also absorb and cushion shock loads, protecting the connected components from damage and preventing system failures in high-impact situations.

4. Torque Transmission:

Shaft couplings are designed to transmit torque from one shaft to another efficiently. They ensure that the rotational motion of the driving shaft is effectively transferred to the driven shaft, allowing the equipment to perform its intended function.

5. Overload Protection:

Certain types of shaft couplings, such as shear pin couplings, act as safety devices by providing overload protection. In case of excessive torque or shock loads, the shear pin in the coupling will fail, disconnecting the driving and driven shafts and preventing damage to the equipment.

6. Angular Flexibility:

Shaft couplings with angular flexibility can handle small angular misalignments between the shafts, compensating for shaft deflection or movement due to external forces.

7. Easy Installation and Maintenance:

Shaft couplings are generally easy to install and require minimal maintenance. They are available in various designs, sizes, and materials to suit different applications and operating conditions.

8. Versatility:

Shaft couplings are versatile components used in a wide range of industries and applications. They can be found in machinery for material handling, manufacturing, mining, transportation, and more.

9. Cost-Effectiveness:

Using shaft couplings eliminates the need for rigid connections between shafts, which can be costly and difficult to implement, especially in situations where misalignment is prevalent. Shaft couplings provide a cost-effective solution for efficient power transmission.

Overall, shaft couplings play a crucial role in connecting rotating shafts, ensuring smooth power transmission, protecting equipment from misalignment-related issues, and enhancing the overall performance and reliability of mechanical systems.

“`
China Professional FCL Flexible Shaft Couplings for Reducer and Motor  China Professional FCL Flexible Shaft Couplings for Reducer and Motor
editor by CX 2024-05-06

China Standard FCL Flexible Shaft Couplings for Reducer and Motor

Product Description

SC Transmission FCL Flexible Shaft Couplings for Reducer and Motor

 

Product Description

FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 

As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.

Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Product Parameters

SIZE     D D1 d1 L C n-M kg
  r/min
N.m  
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

 

Company Profile

FAQ

Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Can Shaft Couplings Compensate for Angular, Parallel, and Axial Misalignments?

Yes, shaft couplings are designed to compensate for different types of misalignments between rotating shafts in mechanical power transmission systems. They can handle the following types of misalignments:

  • Angular Misalignment: This occurs when the shafts are not parallel and have an angle between them. Flexible couplings, such as elastomeric, beam, or Oldham couplings, can accommodate angular misalignments by allowing slight angular movement between the shafts while transmitting torque.
  • Parallel Misalignment: This happens when the shafts are not collinear, resulting in axial displacement. Flexible couplings with lateral flexibility, like elastomeric or bellows couplings, can handle parallel misalignment by allowing limited lateral movement between the shafts.
  • Radial Misalignment: Radial misalignment occurs when the shafts have lateral displacement but remain parallel. Flexible couplings, such as jaw or grid couplings, can absorb radial misalignment by permitting some lateral deflection while transmitting torque.

It is essential to note that while shaft couplings can compensate for misalignments to some extent, they do have their limits. The magnitude of misalignment they can handle depends on the type and design of the coupling. Exceeding the specified misalignment capabilities of a coupling can lead to premature wear, reduced efficiency, and possible coupling failure.

Therefore, when selecting a shaft coupling for an application, it is crucial to consider the expected misalignment and choose a coupling that can accommodate the anticipated misalignment range. Additionally, maintaining proper alignment through regular maintenance and periodic inspections is essential to ensure the coupling’s optimal performance and extend its service life.

“`shaft coupling

Comparing Shaft Couplings with Other Types of Couplings in Performance

Shaft couplings are essential components in mechanical power transmission systems, and their performance characteristics vary depending on the coupling type. Let’s compare shaft couplings with other common types of couplings:

1. Shaft Couplings:

Shaft couplings come in various designs, including flexible and rigid couplings. They are widely used in a broad range of applications due to their ability to transmit torque and accommodate misalignments between rotating shafts. Flexible shaft couplings, with elastomeric or metallic elements, offer good misalignment compensation and damping characteristics. Rigid couplings, on the other hand, provide precise torque transmission and are ideal for applications where shafts are well-aligned.

2. Gear Couplings:

Gear couplings are robust and designed for heavy-duty applications. They consist of two external gear hubs with internal gear teeth that mesh together. Gear couplings can handle high torque, high-speed, and angular misalignment. They are often used in demanding industries such as steel, mining, and paper manufacturing.

3. Grid Couplings:

Grid couplings feature a flexible grid element between the two halves of the coupling. They provide excellent shock absorption and misalignment compensation. Grid couplings are commonly used in pumps, compressors, and other industrial machinery.

4. Disc Couplings:

Disc couplings utilize flexible metallic discs to transmit torque and compensate for misalignment. They offer high torsional stiffness, making them suitable for applications requiring precise motion control, such as robotics and CNC machines.

5. Jaw Couplings:

Jaw couplings consist of two hubs with elastomeric spider inserts. They are easy to install, have good misalignment capabilities, and offer electrical isolation between shafts. Jaw couplings are widely used in light to medium-duty applications.

6. Oldham Couplings:

Oldham couplings have three discs—two outer discs with slots and a central disc with a tongue that fits into the slots. They provide excellent angular misalignment compensation while maintaining constant velocity between shafts. Oldham couplings are commonly used in printing machines and conveyors.

7. Beam Couplings:

Beam couplings are made from a single piece of flexible material with spiral cuts. They offer good misalignment compensation and torsional flexibility, making them suitable for precision equipment like encoders and servo motors.

The choice of coupling depends on the specific requirements of the application, including torque, speed, misalignment compensation, environmental conditions, and space limitations. Each coupling type has its strengths and limitations, and selecting the right coupling is crucial to ensure optimal performance and reliability in the mechanical system.

“`shaft coupling

Best Practices for Installing a Shaft Coupling for Optimal Performance

Proper installation of a shaft coupling is crucial for ensuring optimal performance and preventing premature wear or failure. Follow these best practices to install a shaft coupling correctly:

1. Shaft Alignment:

Ensure that both the driving and driven shafts are properly aligned before installing the coupling. Misalignment can lead to increased stress on the coupling and other connected components, reducing efficiency and causing premature wear. Use alignment tools, such as dial indicators or laser alignment systems, to achieve accurate shaft alignment.

2. Cleanliness:

Before installation, clean the shaft ends and the coupling bore thoroughly. Remove any dirt, debris, or residue that could interfere with the coupling’s fit or cause misalignment.

3. Lubrication:

Apply the recommended lubricant to the coupling’s contact surfaces, such as the bore and shaft ends. Proper lubrication ensures smooth installation and reduces friction during operation.

4. Correct Fit:

Ensure that the coupling is the correct size and type for the application. Use couplings with the appropriate torque and speed ratings to match the equipment’s requirements.

5. Fastening:

Use the recommended fastening methods, such as set screws or keyways, to securely attach the coupling to the shafts. Make sure the fasteners are tightened to the manufacturer’s specifications to prevent loosening during operation.

6. Spacer or Adapter:

If required, use a spacer or adapter to properly position the coupling on the shafts and maintain the desired distance between the driving and driven components.

7. Avoid Shaft Damage:

Be careful during installation to avoid damaging the shaft ends, especially when using set screws or other fastening methods. Shaft damage can lead to stress concentrations and eventual failure.

8. Check Runout:

After installation, check the coupling’s runout using a dial indicator to ensure that it rotates smoothly and without wobbling. Excessive runout can indicate misalignment or improper fit.

9. Periodic Inspection:

Regularly inspect the coupling and its components for signs of wear, misalignment, or damage. Perform routine maintenance as recommended by the manufacturer to prevent issues from worsening over time.

10. Follow Manufacturer’s Guidelines:

Always follow the manufacturer’s installation instructions and guidelines. Different types of couplings may have specific installation requirements that need to be adhered to for optimal performance and safety.

By following these best practices, you can ensure that your shaft coupling is installed correctly, maximizing its efficiency and reliability in your mechanical power transmission system.

“`
China Standard FCL Flexible Shaft Couplings for Reducer and Motor  China Standard FCL Flexible Shaft Couplings for Reducer and Motor
editor by CX 2024-04-25

China supplier FCL Flexible Shaft Couplings for Reducer and Motor

Product Description

SC Transmission FCL Flexible Shaft Couplings for Reducer and Motor

 

Product Description

FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 

As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.

Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Product Parameters

SIZE     D D1 d1 L C n-M kg
  r/min
N.m  
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

 

Company Profile

FAQ

Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Exploring the Use of Elastomeric Materials in Flexible Shaft Couplings

Elastomeric materials play a crucial role in the design and function of flexible shaft couplings. These materials, commonly known as elastomers, are rubber-like substances that exhibit high elasticity and flexibility. They are widely used in various types of flexible couplings due to their unique properties and benefits:

1. Damping and Vibration Absorption:

Elastomeric materials have excellent damping characteristics, meaning they can absorb and dissipate vibrations and shocks. This property is particularly useful in applications where vibration control is essential to protect sensitive equipment and improve overall system performance.

2. Misalignment Compensation:

Flexible shaft couplings with elastomeric elements can accommodate different types of misalignments, including angular, parallel, and radial misalignments. The elasticity of the material allows for limited movement between the shafts while still transmitting torque efficiently.

3. Torsional Flexibility:

Elastomers offer torsional flexibility, which allows them to twist and deform under torque loads. This feature helps to minimize torsional stresses and torsional backlash, making them suitable for applications requiring precise motion control.

4. Shock and Impact Resistance:

Due to their high resilience, elastomers can withstand sudden shocks and impacts without permanent deformation. This property makes them ideal for use in machinery subjected to varying loads or rapid changes in torque.

5. No Lubrication Requirement:

Elastomeric couplings are often maintenance-free because the elastomer material does not require additional lubrication. This reduces maintenance costs and simplifies the overall system upkeep.

6. Electric Isolation:

In certain applications, elastomeric materials can provide electrical isolation between the driving and driven components. This can help prevent the transmission of electrical currents or static charges through the coupling.

7. Corrosion Resistance:

Many elastomers used in couplings are resistant to corrosion, making them suitable for use in challenging environments where exposure to chemicals or moisture is a concern.

8. Easy Installation:

Elastomeric couplings are often designed for ease of installation and replacement. Their flexibility allows for simple and quick assembly onto the shafts without the need for special tools or complex procedures.

Given these advantages, elastomeric materials are popular choices for various flexible shaft couplings, including jaw couplings, tire couplings, and spider couplings. However, it is essential to select the right elastomer material based on the specific application requirements, such as temperature range, chemical compatibility, and torque capacity.

“`shaft coupling

Do Shaft Couplings Require Regular Maintenance, and if so, What Does it Involve?

Yes, shaft couplings do require regular maintenance to ensure their optimal performance, extend their service life, and prevent unexpected failures. The maintenance frequency may vary based on factors such as the coupling type, application, operating conditions, and the manufacturer’s recommendations. Here’s what regular maintenance for shaft couplings typically involves:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Check for cracks, corrosion, and worn-out elastomeric elements (if applicable). Look for any abnormal movement or rubbing between the coupling components during operation.

2. Lubrication:

If the shaft coupling requires lubrication, follow the manufacturer’s guidelines for the appropriate lubricant type and frequency. Lubrication helps reduce friction, wear, and noise in the coupling.

3. Alignment Check:

Monitor shaft alignment periodically. Misalignment can lead to premature coupling failure and damage to connected equipment. Make adjustments as needed to keep the shafts properly aligned.

4. Torque Check:

For bolted couplings, periodically check the torque on the bolts to ensure they remain securely fastened. Loose bolts can lead to misalignment and reduce coupling performance.

5. Replace Worn Components:

If any coupling components show signs of wear or damage beyond acceptable limits, replace them promptly with genuine replacement parts from the manufacturer.

6. Environmental Considerations:

In harsh environments with exposure to chemicals, moisture, or extreme temperatures, take additional measures to protect the coupling, such as applying corrosion-resistant coatings or using special materials.

7. Monitoring Coupling Performance:

Implement a monitoring system to track coupling performance and detect any changes or abnormalities early on. This could include temperature monitoring, vibration analysis, or other condition monitoring techniques.

8. Professional Inspection:

Periodically have the coupling and connected machinery inspected by qualified professionals to identify any potential issues that may not be apparent during regular inspections.

By adhering to a regular maintenance schedule and taking proactive measures to address potential issues, you can ensure that your shaft couplings operate reliably and efficiently throughout their service life, minimizing downtime and improving overall system performance.

“`shaft coupling

How Does a Flexible Shaft Coupling Differ from a Rigid Shaft Coupling?

Flexible shaft couplings and rigid shaft couplings are two distinct types of couplings, each designed to serve different purposes in mechanical power transmission. Here are the key differences between the two:

1. Flexibility:

The most significant difference between flexible and rigid shaft couplings is their flexibility. Flexible couplings are designed with elements that can deform or flex to accommodate misalignments between the shafts. This flexibility allows for angular, parallel, and axial misalignments, making them suitable for applications where shafts are not perfectly aligned. In contrast, rigid couplings do not have this flexibility and require precise alignment between the shafts.

2. Misalignment Compensation:

Flexible couplings excel in compensating for misalignments, making them ideal for applications with dynamic conditions or those prone to misalignment due to thermal expansion or vibrations. Rigid couplings, on the other hand, are used in applications where perfect alignment is critical to prevent vibration, wear, and premature failure.

3. Damping Properties:

Flexible couplings, particularly those with elastomeric or flexible elements, offer damping properties, meaning they can absorb and reduce shocks and vibrations. This damping capability helps protect the connected equipment from damage and enhances system reliability. Rigid couplings lack this damping ability and can transmit shocks and vibrations directly between shafts.

4. Torque Transmission:

Both flexible and rigid couplings are capable of transmitting torque from the driving shaft to the driven shaft. However, the torque transmission of flexible couplings can be limited compared to rigid couplings, especially in high-torque applications.

5. Types of Applications:

Flexible couplings find applications in a wide range of industries, especially in situations where misalignment compensation, vibration damping, and shock absorption are essential. They are commonly used in conveyors, pumps, compressors, printing presses, and automation systems. Rigid couplings are used in precision machinery and applications that demand perfect alignment, such as high-speed spindles and certain types of precision equipment.

6. Installation:

Flexible couplings are relatively easier to install due to their ability to accommodate misalignment. On the other hand, rigid couplings require careful alignment during installation to ensure proper functioning and prevent premature wear.

The choice between a flexible and a rigid shaft coupling depends on the specific requirements of the application. If misalignment compensation, damping, and flexibility are critical, a flexible coupling is the preferred choice. If precision alignment and direct torque transmission are essential, a rigid coupling is more suitable.

“`
China supplier FCL Flexible Shaft Couplings for Reducer and Motor  China supplier FCL Flexible Shaft Couplings for Reducer and Motor
editor by CX 2024-04-13

China OEM CNC Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings

Product Description

 

Company Profile:

Up Gold(ZheJiang )Automation Technology Co. Ltd, is a supplier of linear guide way, linear rail series,lead screw,block bearing, roller bearing ,ball bearing,pillow block bearing, rod ends bearing ,needle roller bearing,screw bearing ,slider bearings and slewing support bearings and so on.
We have exported more than 100 countries like USA, Mexico,Canada, Spain, Russia,Singapore,Thailand, India etc.We are committed to creating a one-stop shopping platform for customers to save time, improve efficiency with the best price and quality to win the trust of customers. Win-win cooperation is our company’s business philosophy.

Quality is the life of enterprise. We are committed to improving the quality of our products and services. Advanced equipment, skilled technical workers, scientific testing instrument and strict quality control, all of these factors is the key to our development and growth in the intense market competition.

Contact us now to realize the benefits of sourcing from our company. We insist to return new and old customers with best quality, fastest delivery time and most perfect after service. Your satisfaction is our goal.
 

Our Team:
Professional technicians, high-quality production workers, 24-hour salespersons
OUR PHILOSOPHY:
Integrity is at the core of our values, and providing excellent 
service is our top priority. We begin by understanding your 
needs and strive to ensure your utmost satisfaction, forging a mutually beneficial relationship.
OUR MISSION:
Through technology and innovation, we strive to enhance 
product quality and deliver exceptional products and services 
to you.
OUR VISION:
We are firmly dedicated to CHINAMFG the pinnacle of highquality standards and venturing into the realm of world-class 
advanced manufacturing industries.
We are excited about the opportunity to work with you and 
exceed your expectations.

 
 

professional machine:

 

 

 

The Feedback:

 

Product Details:

Product Introducation:

Product Name Coupling
Feature 1. Compact Structure
2.High Strength

 

3. Long Lasting
4. Anti-corrosion
5. Easy Maintenance
Precision High Precision
Material

Aluminum Alloy

Delivery Time 1) 1-5 Workdays for Samples or in Stock
2) 10-30 Working Days for Ordering

 
 

Packaging and Logistics:

Air freight
Less than 45 KGS,we will send by express.
(Door to Door,Convenient)
Land transportation
Between 45- 150 KGS, we will send by air transport.
(Fastest and safest, but expensive)
Railway
More than 150 KGS,we will send by sea.
Shipping
According to the requirement of customer.

 

 

Product Package:

 

 

We at Up Gold (ZheJiang ) Automation Technology Co. LTO. can offer unrivalled product and application knowledge, we can supply ballscrew products of any size or type to our valued customer.
 
We place huge importance on our reputation – a reputation that seems to preceed us more and more. This reputation can only grow through good service and quality products so we’re committed to expanding our range with nothing but the best products and services and the in-house knowledge to back it all up. Of course, in-house knowledge is vitally important, not just to us, but you as a customer – so we’re proud to host some of the best people in the industry.

 

Our Advantages:

*Two-year warranty, replace instead of repair.
*12 Months Warranty
*Fast Delivery
*24 hours on line service
*Professional Team

FAQ:

Q: What is the producing process?

A: Production process including raw material cutting, machine processing,grinding, accessories cleaning, assemble, cleaning, stoving, oil coating,cover pressing, testing, package.

Q: How to control the products quality?

A: Combining advanced equipment and strict management, we provide high standard and quality bearings for our customers all over the world.

Q: What is the transportation?

A: If small quantity, we suggest to send by express, such as DHL, UPS,TNT FEDEX. If large amount, by air or sea shipping.

Q: How about the shipping charge?

A: We will be free of domestic shipping charge from your freight forwarder in China.

Q: Can you provide OEM service?

A: Yes, we provide OEM service. Which means size, quantity, design,packing solution, etc will depend on your requests; and your logo will be customized on our products.

Q: Could you tell me the delivery time of your goods?

A: Generally it is 3-5 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to the quantity.

Q: What about the packaging of your products?

A: Normally we use standard commercial package, we also have our own brand packing or customized package as per customers’ requests. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Exploring the Use of Elastomeric Materials in Flexible Shaft Couplings

Elastomeric materials play a crucial role in the design and function of flexible shaft couplings. These materials, commonly known as elastomers, are rubber-like substances that exhibit high elasticity and flexibility. They are widely used in various types of flexible couplings due to their unique properties and benefits:

1. Damping and Vibration Absorption:

Elastomeric materials have excellent damping characteristics, meaning they can absorb and dissipate vibrations and shocks. This property is particularly useful in applications where vibration control is essential to protect sensitive equipment and improve overall system performance.

2. Misalignment Compensation:

Flexible shaft couplings with elastomeric elements can accommodate different types of misalignments, including angular, parallel, and radial misalignments. The elasticity of the material allows for limited movement between the shafts while still transmitting torque efficiently.

3. Torsional Flexibility:

Elastomers offer torsional flexibility, which allows them to twist and deform under torque loads. This feature helps to minimize torsional stresses and torsional backlash, making them suitable for applications requiring precise motion control.

4. Shock and Impact Resistance:

Due to their high resilience, elastomers can withstand sudden shocks and impacts without permanent deformation. This property makes them ideal for use in machinery subjected to varying loads or rapid changes in torque.

5. No Lubrication Requirement:

Elastomeric couplings are often maintenance-free because the elastomer material does not require additional lubrication. This reduces maintenance costs and simplifies the overall system upkeep.

6. Electric Isolation:

In certain applications, elastomeric materials can provide electrical isolation between the driving and driven components. This can help prevent the transmission of electrical currents or static charges through the coupling.

7. Corrosion Resistance:

Many elastomers used in couplings are resistant to corrosion, making them suitable for use in challenging environments where exposure to chemicals or moisture is a concern.

8. Easy Installation:

Elastomeric couplings are often designed for ease of installation and replacement. Their flexibility allows for simple and quick assembly onto the shafts without the need for special tools or complex procedures.

Given these advantages, elastomeric materials are popular choices for various flexible shaft couplings, including jaw couplings, tire couplings, and spider couplings. However, it is essential to select the right elastomer material based on the specific application requirements, such as temperature range, chemical compatibility, and torque capacity.

“`shaft coupling

Do Shaft Couplings Require Regular Maintenance, and if so, What Does it Involve?

Yes, shaft couplings do require regular maintenance to ensure their optimal performance, extend their service life, and prevent unexpected failures. The maintenance frequency may vary based on factors such as the coupling type, application, operating conditions, and the manufacturer’s recommendations. Here’s what regular maintenance for shaft couplings typically involves:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Check for cracks, corrosion, and worn-out elastomeric elements (if applicable). Look for any abnormal movement or rubbing between the coupling components during operation.

2. Lubrication:

If the shaft coupling requires lubrication, follow the manufacturer’s guidelines for the appropriate lubricant type and frequency. Lubrication helps reduce friction, wear, and noise in the coupling.

3. Alignment Check:

Monitor shaft alignment periodically. Misalignment can lead to premature coupling failure and damage to connected equipment. Make adjustments as needed to keep the shafts properly aligned.

4. Torque Check:

For bolted couplings, periodically check the torque on the bolts to ensure they remain securely fastened. Loose bolts can lead to misalignment and reduce coupling performance.

5. Replace Worn Components:

If any coupling components show signs of wear or damage beyond acceptable limits, replace them promptly with genuine replacement parts from the manufacturer.

6. Environmental Considerations:

In harsh environments with exposure to chemicals, moisture, or extreme temperatures, take additional measures to protect the coupling, such as applying corrosion-resistant coatings or using special materials.

7. Monitoring Coupling Performance:

Implement a monitoring system to track coupling performance and detect any changes or abnormalities early on. This could include temperature monitoring, vibration analysis, or other condition monitoring techniques.

8. Professional Inspection:

Periodically have the coupling and connected machinery inspected by qualified professionals to identify any potential issues that may not be apparent during regular inspections.

By adhering to a regular maintenance schedule and taking proactive measures to address potential issues, you can ensure that your shaft couplings operate reliably and efficiently throughout their service life, minimizing downtime and improving overall system performance.

“`shaft coupling

Can a Damaged Shaft Coupling Lead to Equipment Failure and Downtime?

Yes, a damaged shaft coupling can lead to equipment failure and downtime in mechanical power transmission systems. Shaft couplings play a critical role in connecting rotating shafts and transmitting power between them. When a coupling becomes damaged or fails to function properly, several negative consequences can arise:

1. Misalignment Issues:

A damaged coupling may no longer be able to compensate for misalignments between the connected shafts. Misalignment can cause excessive vibration, increased wear, and premature failure of bearings and other connected components. Over time, these issues can lead to equipment breakdown and unplanned downtime.

2. Vibration and Shock Loads:

Without the damping properties of a functional coupling, vibrations and shock loads from the driven equipment can transmit directly to the driving shaft and other parts of the system. Excessive vibrations can lead to fatigue failure, cracking, and damage to the equipment, resulting in reduced operational efficiency and increased downtime.

3. Overloading and Torque Transmission:

A damaged coupling may not effectively transmit the required torque between the driving and driven shafts. In applications where the coupling is a safety device (e.g., shear pin couplings), failure to disengage during overloading situations can lead to equipment overload and damage.

4. Increased Wear and Tear:

A damaged coupling can lead to increased wear on other parts of the system. Components such as bearings, seals, and gears may experience higher stress and wear, reducing their lifespan and increasing the likelihood of breakdowns.

5. Reduced System Reliability:

A functional shaft coupling contributes to the overall reliability of the mechanical system. A damaged coupling compromises this reliability, making the system more prone to failures and unplanned maintenance.

6. Downtime and Production Loss:

When a shaft coupling fails, it often results in unscheduled downtime for repairs or replacement. Downtime can be costly for industries that rely on continuous production processes and can lead to production losses and missed delivery deadlines.

7. Safety Hazards:

In certain applications, such as heavy machinery or industrial equipment, a damaged coupling can create safety hazards for workers and surrounding equipment. Sudden failures or uncontrolled movements may pose risks to personnel and property.

Regular inspection, maintenance, and prompt replacement of damaged shaft couplings are essential to prevent equipment failure, minimize downtime, and ensure safe and efficient operation of mechanical systems. It is crucial to address any signs of coupling wear or damage immediately to avoid potential catastrophic failures and costly disruptions to operations.

“`
China OEM CNC Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings  China OEM CNC Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings
editor by CX 2024-03-15

China manufacturer CNC Spider Jaw Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings

Product Description

Product Description

DO NOT worry about PRICE, we are manufacturer.

 

DO NOT worry about QUALITY, we have 16 years experience.

 

DO NOT worry about AFTER-SALES, we are 24 hours online.

Features :

1. The main body is made of high strength aluminum alloy
2. Zero backlash, suitable for forward and reverse rotation
3.Colloid is made of polyurethane, which has good wear resistance
4.Oil resistance and electrical insulation, the middle elasticbody can absorb vibration
5. Compensate radial, angular and axial deviations
6. Removable design for easy installation
7. Tightening method of positioning screw

Suitable for a wide range of devices

    CNC lathes                                                Optical inspection equipment

                     Module slider                                                                 Servo motor

Company Profile

Certifications

 

Packaging & Shipping

All products will be well packed with standard export wooden case or
cartons.

Shafts packed with paper tube or plastic bag;
Linear guideways or lead screwswrapped with film or plastic bag;

Guarantee well protected against dampness,moisture, rust and shock.

 

Our Advantages

FAQ

Q1: Do you have a catalogue? Can you send me the catalogue to have a check of all your products?

A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.
 

Q2: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.

Q3 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.Just have to point out that ,it will cause some additional cost.

Q4: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.

Any requirements or question,Welcome to “Send” us an e-mail Now!
It’s our great honor to do services for you! You also can get the FREE SAMPLES soon.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

How to Select the Right Shaft Coupling for Specific Torque and Speed Requirements

Selecting the appropriate shaft coupling involves considering the specific torque and speed requirements of the application. Here’s a step-by-step guide to help you choose the right coupling:

1. Determine Torque and Speed:

Identify the torque and speed requirements of the application. Torque is the rotational force required to transmit power between the shafts, usually measured in Nm (Newton-meters) or lb-ft (pound-feet). Speed refers to the rotational speed of the shafts, typically measured in RPM (revolutions per minute).

2. Calculate Torque Capacity:

Check the torque capacity of various shaft couplings. Manufacturers provide torque ratings for each coupling type and size. Ensure that the selected coupling has a torque capacity that exceeds the application’s torque requirements.

3. Consider Misalignment:

If the application involves significant shaft misalignment due to thermal expansion, vibration, or other factors, consider flexible couplings with good misalignment compensation capabilities. Elastomeric or beam couplings are popular choices for such applications.

4. Assess Operating Speed:

For high-speed applications, choose couplings with high rotational speed ratings to avoid resonance issues and potential coupling failure. High-speed couplings may have specialized designs, such as disk or diaphragm couplings.

5. Evaluate Environmental Conditions:

If the coupling will operate in harsh environments with exposure to chemicals, moisture, or extreme temperatures, select couplings made from corrosion-resistant materials or with protective coatings.

6. Check Torsional Stiffness:

In applications requiring precision motion control, consider couplings with high torsional stiffness to minimize torsional backlash and maintain accurate positioning. Bellows or Oldham couplings are examples of couplings with low torsional backlash.

7. Size and Space Constraints:

Ensure that the selected coupling fits within the available space and aligns with the shaft dimensions. Be mindful of any installation limitations, especially in confined spaces or applications with limited radial clearance.

8. Consult Manufacturer’s Data:

Refer to the manufacturer’s catalogs and technical data sheets for detailed information on each coupling’s torque and speed ratings, misalignment capabilities, materials, and other relevant specifications.

9. Consider Cost and Maintenance:

Compare the costs and maintenance requirements of different couplings. While some couplings may have higher upfront costs, they could offer longer service life and reduced maintenance costs in the long run.

By following these steps and considering the specific torque and speed requirements of your application, you can select the right shaft coupling that will ensure efficient power transmission and reliable performance for your mechanical system.

“`shaft coupling

Temperature and Speed Limits for Different Shaft Coupling Types

The temperature and speed limits of shaft couplings vary depending on the materials and design of the coupling. Manufacturers provide specific guidelines and ratings for each coupling type. Below are general temperature and speed limits for some common shaft coupling types:

1. Elastomeric Couplings:

Elastomeric couplings, such as jaw couplings and tire couplings, typically have temperature limits ranging from -40°C to 100°C (-40°F to 212°F). The speed limits for elastomeric couplings are generally up to 5,000 RPM, but some designs may allow higher speeds.

2. Metallic Couplings:

Metallic couplings, like gear couplings and disc couplings, can handle a wider temperature range, typically from -50°C to 200°C (-58°F to 392°F). The speed limits for metallic couplings vary based on the size and design, but they can range from 3,000 RPM to over 10,000 RPM.

3. Grid Couplings:

Grid couplings have temperature limits similar to metallic couplings, ranging from -50°C to 200°C (-58°F to 392°F). The speed limits for grid couplings are typically in the range of 3,000 to 5,000 RPM.

4. Oldham Couplings:

Oldham couplings usually have temperature limits from -30°C to 100°C (-22°F to 212°F) and speed limits ranging from 1,000 to 5,000 RPM.

5. Beam Couplings:

Beam couplings generally have temperature limits from -40°C to 120°C (-40°F to 248°F) and speed limits between 5,000 to 10,000 RPM.

6. Fluid Couplings:

Fluid couplings are suitable for a wide range of temperatures, often from -50°C to 300°C (-58°F to 572°F). The speed limits depend on the size and design of the fluid coupling but can extend to several thousand RPM.

It’s important to note that these are general guidelines, and the actual temperature and speed limits may vary based on the specific coupling manufacturer, material quality, and application requirements. Always refer to the manufacturer’s documentation and technical specifications for accurate and up-to-date temperature and speed limits for a particular shaft coupling model.

“`shaft coupling

Can a Damaged Shaft Coupling Lead to Equipment Failure and Downtime?

Yes, a damaged shaft coupling can lead to equipment failure and downtime in mechanical power transmission systems. Shaft couplings play a critical role in connecting rotating shafts and transmitting power between them. When a coupling becomes damaged or fails to function properly, several negative consequences can arise:

1. Misalignment Issues:

A damaged coupling may no longer be able to compensate for misalignments between the connected shafts. Misalignment can cause excessive vibration, increased wear, and premature failure of bearings and other connected components. Over time, these issues can lead to equipment breakdown and unplanned downtime.

2. Vibration and Shock Loads:

Without the damping properties of a functional coupling, vibrations and shock loads from the driven equipment can transmit directly to the driving shaft and other parts of the system. Excessive vibrations can lead to fatigue failure, cracking, and damage to the equipment, resulting in reduced operational efficiency and increased downtime.

3. Overloading and Torque Transmission:

A damaged coupling may not effectively transmit the required torque between the driving and driven shafts. In applications where the coupling is a safety device (e.g., shear pin couplings), failure to disengage during overloading situations can lead to equipment overload and damage.

4. Increased Wear and Tear:

A damaged coupling can lead to increased wear on other parts of the system. Components such as bearings, seals, and gears may experience higher stress and wear, reducing their lifespan and increasing the likelihood of breakdowns.

5. Reduced System Reliability:

A functional shaft coupling contributes to the overall reliability of the mechanical system. A damaged coupling compromises this reliability, making the system more prone to failures and unplanned maintenance.

6. Downtime and Production Loss:

When a shaft coupling fails, it often results in unscheduled downtime for repairs or replacement. Downtime can be costly for industries that rely on continuous production processes and can lead to production losses and missed delivery deadlines.

7. Safety Hazards:

In certain applications, such as heavy machinery or industrial equipment, a damaged coupling can create safety hazards for workers and surrounding equipment. Sudden failures or uncontrolled movements may pose risks to personnel and property.

Regular inspection, maintenance, and prompt replacement of damaged shaft couplings are essential to prevent equipment failure, minimize downtime, and ensure safe and efficient operation of mechanical systems. It is crucial to address any signs of coupling wear or damage immediately to avoid potential catastrophic failures and costly disruptions to operations.

“`
China manufacturer CNC Spider Jaw Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings  China manufacturer CNC Spider Jaw Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings
editor by CX 2024-01-12

China high quality CHINAMFG Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs Afn Bfn Ah Sh CF Cfn Df Dfn Zs-Dkm-Sh Zrs Zr Btan Sban Afn-Sb Special SD Shaft Coupling

Product Description

ROTEX Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs AFN BFN AH SH CF CFN DF DFN ZS-DKM-SH ZRS ZR BTAN SBAN AFN-SB Special SD Shaft Coupling
 

ROTEX torsionally flexible jaw couplings

ROTEX torsionally flexible jaw couplings are elastomer couplings characterized by a compact design.

In spite of low weights and mass moments of inertia of the elastomer couplings they are able to transmit high torques. The compact shaft couplings are characterized by a long service life and sound operating characteristics generated by allover machining.

Overview: ROTEX torsionally flexible jaw couplings
ROTEX torsionally flexible jaw couplings are elastomer couplings characterized by a compact design.

ROTEX Standard
0 – 35,000 Nm / torsionally flexible jaw coupling

The original – renowned industrial standard

The torsionally flexible jaw coupling CHINAMFG Standard is an elastomer coupling with feather keyway and particularly low-priced due to its simple structure.
For mounting the hubs of the elastomer coupling are simply pushed on the shafts and axially fastened via setscrews.

Our flexible elastomer coupling CHINAMFG Standard is provided with splines acc. to DIN and SAE as a standard.

The torsionally flexible CHINAMFG couplings are suitable for universal use and applied as a flexible shaft connection in almost all ranges of general mechanical and plant engineering.

Features
torsionally flexible coupling for torsional vibration-damping power transmission
low-cost standard type
standard spiders made of high temperature-resistant T-PUR
splines acc. to DIN and SAE
complying with ATEX (acc. to EU directive 2014/34/EU)

Product Details
The coupling hubs of the flexible shaft coupling are available in the following materials:
– steel
– sintered steel
– stainless steel
– aluminium wrought products
– aluminium diecast
– cast iron
– nodular iron

ROTEX taper clamping sleeve
0 – 12,500 Nm / torsionally flexible jaw coupling

Jaw coupling can be combined with taper clamping sleeves

The torsionally flexible jaw coupling CHINAMFG for taper clamping sleeve is an elastomer coupling that can be combined with various types of taper clamping sleeves.

The compact design of this elastomer coupling in combination with the slide fit facilitates the assembly and axial alignment of the flexible shaft coupling.

The clamping screws to be used additionally secure the friction connection by a positive-locking fit.The torsionally flexible jaw coupling CHINAMFG for taper clamping sleeve is an elastomer coupling that can be combined with various types of taper clamping sleeves.
The compact design of this elastomer coupling in combination with the slide fit facilitates the assembly and axial alignment of the flexible shaft coupling.
The clamping screws to be used additionally secure the friction connection by a positive-locking fit.

Features
flexible jaw coupling for combining with taper clamping sleeves / taperlock clamping sleeves
slide fit facilitates axial alignment of the coupling
compact design
Additional protection by positive-locking fit, each half of the clamping screws being in the coupling hub and taper clamping sleeve
complying with ATEX (acc. to EU directive 2014/34/EU)

ROTEX clamping ring hubs
0 – 4,500 Nm / torsionally flexible jaw coupling

Jaw coupling with clamping ring hubs for fricitionally engaged shaft-hub-connections

ROTEX clamping ring hubs are torsionally flexible elastomer couplings with an integrated clamping system for frictionally engaged shaft-hub-connections.

Thanks to the integrated clamping system the CHINAMFG clamping ring hubs are able to transmit high friction torques. The internal clamping screws allow for easy assembly of the coupling.

Due to the rotation symmetry this type is additionally characterized by particularly smooth running

Features
torsionally flexible jaw couplings with integrated clamping system
friction connection for cylindrical shafts
application up to a circumferential speed of 40 m/s 
particularly smooth running
high friction torques

ROTEX clamping hubs
0 – 4,500 Nm / torsionally flexible jaw coupling with clamping hubs

Jaw coupling with clamping hubs for spline bores acc. to DIN and SAE

ROTEX clamping hubs are torsionally flexible elastomer couplings with clamping hubs and particularly suitable for applications with reversing operation.

Our clamping couplings are provided with spline bores acc. to DIN and SAE as a standard (for standard splines see catalogue). Clamping, i. e. axial fastening of the hub, is realised via cap screws.

Easy assembly and disassembly of the hubs of this clamping coupling.

Features
fail-safe clamping coupling (clamping hubs)
standard hub material steel
suitable in combination with spline bores acc. to DIN 5480, DIN 5482, SAE J498 as well as DIN 9611 / ISO 500 (p. t. o. shaft), DIN 5463 (ISO 14), DIN 5481 and DIN 5472
balanced based on 3D-CAD data
particularly suitable for applications with reversing operation

ROTEX AFN
0 – 35,000 Nm / coupling as a flange type

Jaw coupling as a double flange type

ROTEX AFN is a torsionally flexible elastomer coupling as a double-flange type and particularly suitable for applications in heavy engineering.

Type AFN of the CHINAMFG elastomer coupling is characterized by the double flange type allowing for radial assembly and disassembly of the shaft coupling or elastomer without displacing the driving or driven side.

The flange hub 4N of the torsionally flexible jaw coupling as a flange type CHINAMFG AFN is made of steel and the driving flange 3Na is made of GJS.

Features
fail-safe jaw coupling
complying with UKEX (acc. to UKEX directive SI 2016:1107)
complying with ATEX (acc. to EU directive 2014/34/EU)
application up to a circumferential speed of 40 m/s 
compensating for displacements (axial, radial, angular)

ROTEX BFN
0 – 35,000 Nm / coupling as a flange type

ROTEX BFN is a torsionally flexible elastomer coupling as a flange type (flange coupling) and particularly suitable for applications in heavy engineering.

Type BFN of the CHINAMFG elastomer coupling is characterized by the flange type allowing for radial assembly and disassembly of the shaft coupling or the elastomer without displacing the driving or driven side.

The flange hub 4N of the torsionally jaw coupling as a flange type CHINAMFG BFN is made of steel and the driving flange 3Na is made of GJS.

Features
fail-safe jaw coupling
low inertia
complying with ATEX (acc. to EU directive 2014/34/EU)
complying with UKEX (acc. to UKEX directive SI 2016:1107)
damping vibrations

ROTEX AH
0 – 12,500 Nm / torsionally flexible coupling with split hubs

Radial assembly/disassembly of the jaw coupling via 4 screws only

The torsionally flexible jaw coupling CHINAMFG AH is an elastomer coupling with split hubs (half shell coupling). This design is also referred to as drop-our center design coupling, half shell coupling, clamping coupling, coupling with split hubs or elastomer coupling with split clamping hub.

The hubs of the CHINAMFG elastomer coupling type A-H are split. Easy radial asssembly/disassembly of the half shell coupling made by tightening and unscrewing 4 screws only. The version is available both with and without feather keyway.

Features
assembly/disassembly via 4 screws
compensating for displacements (axial, radial, angular)
maintenance-free
complying with ATEX (acc. to EU directive 2014/34/EU)
complying with UKEX (acc. to UKEX directive SI 2016:1107)

ROTEX SH
0 – 4,500 Nm / torsionally flexible coupling with split hubs

Coupling with split hubs / SPLIT hubs

The torsionally flexible jaw coupling CHINAMFG SH is an elastomer coupling with split hubs / SPLIT hubs (half shell coupling) easy to service and is characterized by easy assembly and disassembly.
This design is also referred to as drop-our center design coupling, half shell coupling, clamping coupling, coupling with split hubs or elastomer coupling with split clamping hub.

Elastomer coupling with split hubs / SPLIT hubs:
The hubs of the half shell coupling CHINAMFG SH have been split into 2 halves precisely, mechanically and reliably by “cracking”. A rough surface with positive-locking connection ensuring an accurate fit of the 2 halves is generated. The contoured, rough cracked surfaces ensure ideal centering of the hub halves. The split hubs allow to assemble and disassemble the elastomer coupling radially via 4 screws without displacing the adjacent power packs. This makes the elastomer coupling with split clamping hub particularly easy to assemble and service.

Features
material cast iron
complying with ATEX (acc. to EU directive 2014/34/EU)
easy assembly/disassembly via 4 screws
centering of both hub halves through the cracked surface
displacing the power packs is not necessary for assembly

ROTEX CF
0 – 35,000 Nm / jaw coupling with flange connection on 1 side

The torsionally flexible jaw coupling CHINAMFG CF is an elastomer coupling with a flange connection on 1 side (flange coupling) and particularly suitable for applications in heavy engineering.

Type CF of the CHINAMFG elastomer coupling is characterized by a short mounting length of the flange connection on 1 side.

The driving flanges and hubs are available from stock. The flange is available from stock both with tapped holes and without hole/without centering.

Features
torsionally flexible jaw coupling as a flange type for heavy engineering
driving flanges and hubs available from stock
flange with tapped holes available from stock
flange without bore and without centering available from stock
material: driving flange 3b made of GGG40 (nodular iron)

ROTEX CFN
0 – 35,000 Nm / jaw coupling with flange connection on 1 side

The torsionally flexible jaw coupling CHINAMFG CFN is an elastomer coupling with a flange connection on 1 side (flange coupling) and particularly suitable for applications in heavy engineering.

Type CFN of the CHINAMFG elastomer coupling is characterized by the double flange design allowing for radial assembly and disassembly of the shaft coupling or elastomer without displacing the driving or driven side.

The driving flange and the hubs are available from stock.

Features
torsionally flexible jaw coupling as a flange type for heavy engineering
radially mountable without displacing the driving components
particularly short mounting length
flange material: 3b made of GGG40 (nodular iron)
customized mounting flanges on request

ROTEX DF
0 – 35,000 Nm / jaw coupling with flange connection on both sides

The torsionally flexible jaw coupling CHINAMFG DF is an elastomer coupling with flange connection on both sides (flange coupling) and particularly suitable for applications in heavy engineering.

The driving flanges and hubs are available from stock. The flanges are available from stock both with tapped holes and without hole/without centering.

Features
torsionally flexible jaw coupling (flange coupling) with flange connection on both sides for heavy engineering
damping vibrations
axial plug-in
fail-safe
maintenance-free

ROTEX DFN
0 – 35,000 Nm / jaw coupling with flange connection on both sides

The torsionally flexible jaw coupling CHINAMFG DFN is an elastomer coupling with flange connection on both sides (flange coupling) for screwing of driving and driven machine.
This torsionally flexible coupling is particularly suitable for applications in heavy engineering.

The CHINAMFG DFN elastomer coupling with flange connection on both sides can be radially assembled and disassembled without displacing the adjacent power packs. This allows for quick replacement of spiders, too.

The driving flanges and hubs are available from stock.

Features
torsionally flexible jaw coupling (flange coupling) with flange connection on both sides for heavy engineering
for screwing of driving and driven machine
radially mountable without displacing the driving components
quick replacement of spider possible
flange material: 3b made of GGG40 (nodular iron)

ROTEX ZS-DKM-SH
0 – 2,400 Nm / double-cardanic coupling with split hubs

The torsionally flexible jaw coupling ZS-DKM-SH is a double-cardanic elastomer coupling with split hubs (SH SPLIT).

The CHINAMFG ZS-DKM-SH with SPLIT hub provides the advantage that the coupling can be radially assembled and disassembled without displacing the adjacent power packs. The hub resp. connection of the 2 hub halves is not weakened by cracking.

This design is also referred to as drop-our center design coupling, half shell coupling, clamping coupling, coupling with split hubs or elastomer coupling with split clamping hub.

The hubs of the double-cardanic jaw coupling CHINAMFG ZS-DKM-SH are mechanically split by cracking and screwed back together with the assembly. This elastomer coupling is ideally suitable to offset larger radial displacements. Due to the split hubs the coupling can be radially assembled and disassembled without displacing the adjacent power packs.

Features
double-cardanic jaw coupling for large shaft displacements
good damping properties due to double arrangement of spiders
spacers adapted to drop-out center length of standard pumps
for bigger radial displacements generated by thermal expansion
assembly/disassembly via 4 screws

ROTEX ZRS
0 – 520 Nm / torsionally flexible intermediate shaft coupling with SPLIT hubs or half shell hubs

ROTEX ZRS jaw coupling for bridging smaller and bigger shaft distances

The lightweight ZRS made of high-strength aluminium captivates by a very high overall stiffness.
The high stiffness of the aluminium pipe arises from the structure consisting of 2 pipes that are connected via webs – the CHINAMFG cams.

The critical bending speed of the coupling is positively affected; shaft distances up to 4,000 mm can be bridged subject to the very low bending.

In addition the speed referring to the shaft distance dimension can be significantly higher than with the renowned intermediate pipe coupling with steel pipe.

The high stiffness of the pipe allows for torque transmission from the soft 92 ShA spider to the torsionally stiff 64 ShD spider.

Fields of application of the torsionally flexible  ROTEX ZR-S intermediate pipe coupling:
The ZRS intermediate pipe coupling is used wherever large shaft distances must be bridged, e. g. on scissors lifts and conveyor systems in the lower torque range.

The wide range of CHINAMFG hubs can be combined with the ZRS pipe. For example in combination with the split ROTEX-SH-SPLIT hubs they allow for radial assemby and disassembly without displacing driving and driven side.

Please note: This type is not permissible for crane and hoist drives.

Features
double-cardanic jaw coupling with half shells (half shell coupling) and intermediate shaft (cardan shaft)
lightweight made of high-strength aluminium convinces by a very high overall stiffness.
for bridging large shaft distances
good damping properties due to double arrangement of spiders
intermediate pipe radially dismountable with flexible bearing in the GS spider

ROTEX ZR
0 – 1,920 Nm / torsionally flexible half shell coupling with intermediate shaft

Jaw coupling for bridging large shaft distances

The torsionally flexible jaw coupling CHINAMFG ZR is a half shell coupling (coupling with split hub) with intermediate shaft for bridging large shaft distances.

Couplings with split hubs are also referred to as drop-out center design couplings, half-shell couplings, clamping coupling or elastomer couplings with split clamping hubs.

The intermediate shaft coupling CHINAMFG ZR allows for bridging large shaft distances. Its half shell clamping hubs allow for radial assembly/disassembly (drop-out center design coupling). Due to its double-cardanic arrangement the intermediate shaft coupling is able to offset large displacements.

Fields of application of the torsionally flexible half shell coupling CHINAMFG ZR with intermediate shaft:
This intermediate shaft coupling with half shell clamping hubs is used wherever large shaft distances must be bridged, e. g. on scissors lifts and conveyor systems in the lower torque range.

Please note: This type is not permissible for crane and hoist drives!

Features
double-cardanic jaw coupling with half shells (half shell coupling) and intermediate shaft (cardan shaft)
for bridging large shaft distances
good damping properties due to double arrangement of spiders
intermediate pipe radially dismountable with flexible bearing in the GS spider
compensating for large displacements due to double-cardanic design

ROTEX BTAN
0 – 12,500 Nm / torsionally flexible jaw coupling with brake drum

The torsionally flexible jaw coupling CHINAMFG BTAN is an elastomer coupling combined with a brake drum. CHINAMFG type BTAN is used as a holding brake, but also a a service brake.

The CHINAMFG jaw coupling with brake drum (drum brake) to be mounted to external drum brakes with double shoes. The brake drum is positioned on the driven side. For combinations with a brake drum please note the potentially resulting high circumferential speed – KTR recommends dynamic balancing with high-speed drives from 30 m/s.

Fields of application of our torsionally flexible jaw coupling CHINAMFG BTAN with brake drum (drum brake):
This combination of coupling and brake is used wherever holding brakes or service brakes are required, e. g. on conveyor belts, generators, turbine drives, industrial fans, cranes, hoists, etc.
Safety-relevant drives are preferably combined with CHINAMFG hubs made of steel/GJS. Applications with moderate demands can be combined with GJL hubs.

Couplings and brakes by KTR:
The customer benefits from being supplied by 1 single source with the option to develop the brakes (KTR-STOP or EMB-STOP) as well. The KTR-STOP brake is hydraulically actuated and EMB-STOP is electromechanically actuated.

Features
each coupling type can be combined with various sizes of brake drums
following DIN 15431/15435
axial plug-in
damping vibrations
compensating for displacements (axial, radial, angular)

ROTEX SBAN
0 – 12,500 Nm / jaw coupling with brake disk

The CHINAMFG jaw coupling with brake disk for disk for brake calipers. Usually the brake disk is positioned on the driven side having the highest mass moment of inertia. For combinations with brake disks please note the potentially resulting high circumferential speed – KTR recommends dynamic balancing with high-speed drives from 30 m/s.

Fields of application of our torsionally flexible jaw coupling CHINAMFG SBAN with brake disk (disk for brake caliper):
This combination of coupling and brake disk is used wherever holding brakes or service brakes are required, e. g. on conveyor belts, generators, turbine drives, industrial fans, cranes, hoists, etc.
Safety-relevant drives are preferably combined with CHINAMFG hubs made of steel/GJS. Applications with moderate demands can be combined with GJL hubs.

Couplings and brakes by KTR:
The customer benefits from being supplied by 1 single source with the option to develop the brakes (KTR-STOP or EMB-STOP) as well. The KTR-STOP brake is hydraulically actuated and EMB-STOP is electromechanically actuated.

Features
torsionally flexible jaw coupling with disk for brake calipers
Every coupling type can be combined with various sizes of brake disks
The brake disk must be fastened on the shoulder of hub 1Nd
The max. braking torque must not exceed the maximum torque of the coupling
Coupling can be combined with our brake systems

ROTEX AFN-SB special
0 – 35,000 Nm / jaw coupling with brake disk

Jaw coupling with brake disk – radially mountable/dismountable

The torsionally flexible jaw coupling CHINAMFG AFN-SB special is an elastomer coupling with brake disk (brake disk coupling).

Brake disk and spider of the elastomer coupling can be replaced when mounted without displacing driving and driven side.

Features
torsionally flexible coupling with brake disk (brake disk coupling / drop-out center design coupling)
damping vibrations
axial plug-in
compensating for displacements (axial, radial, angular)
maintenance-free

ROTEX SD
0 – 12,500 Nm / shiftable jaw coupling

Coupling shiftable at standstill

The torsionally flexible jaw coupling CHINAMFG SD is an elastomer coupling shiftable at standstill (shiftable coupling).

The shiftable CHINAMFG coupling type SD enables easy disconnection and connection of the driving and driven side with standstill of the plant.

Please note with shiftable coupling CHINAMFG SD:
Shiftable linkage also available with locking pins, lock device and retrieval of shifting position via sensors.

Features
jaw coupling shiftable at standstill / shiftable coupling
easy disconnection resp. connection of driving and driven machines with standstill of the plant
existing shiftable hub can be combined with slip ring and shiftable linkage
pilot bored shifting hubs must be set to the necessary shifting force after final machining
complete shifting device consists of split slip ring made of red brass, shifting fork, shifting shaft, shifting lever, eye-type bearing

Why an elastic coupling of Bestseal?
An elastic coupling from Bestseal is the result of decades of product development and innovation. With this, we assure you of a high-quality component with the highest possible reliability. We see ourselves as the reliable partner of anyone who wants to set things in motion.

More than 2,000 employees work passionately every day to provide you, the customer, with the best conceivable products. DIN ISO certifications are the best proof of this. A transparent and honest way of working lies at the basis of every customer relationship with us.

Would you like to learn more about our elastic couplings or answer an important product question? 
Please contact our technical support department or sales department and let us inform you in detail about the various possibilities. 
We will be happy to think along with you based on your wishes and make you a custom offer without any obligation.

we specialized in the development and production of sealing systems   which were used in the Metallurgical,Electrical,Auto, Engineering machinery, Light industrial machinery and Electrical appliance manufacturing industries. BESEALS focus on customers’ needs,as a dependable partner and reliable supplier to help you resolve supply or technical problems ,and improve the performance of your equipments or your business. When you are facing emergency repairs situation or urgent orders,the highly responsive team of DLseals will offer you very short lead time. Beseals has a global sales network,and our seals have been sold to more than 100 countries or areas ,Such as America, England, Canada, Australia, Russian Federation ect .

FAQ

1. who are we? Are you trading company or manufacturer ?
We are manufacturer.We are based in HangZhou, China, start from 2571,sell to Domestic Market(33.00%),North America(15.00%),South America(10.00%),Western Europe(8.00%),Eastern Europe(6.00%),Souther Europe(6.00%),Southeast Asia(5.00%),Mid East(5.00%),Northern Europe(5.00%),Oceania(2.00%),South Asia(2.00%),Africa(00.00%),Eastern Asia(00.00%),Central America(00.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production; Always final Inspection before shipment;

3.what can you buy from us?
PTFE Seals/Oil Seals/O Rings/Rubber Seals/Plastic Seals/Mechanical Seal/O-RING/ RING Seals.

4. why should you buy from us not from other suppliers?

Beseals is a professional manufacturer of seals .Our company specializes in the production of PU, PTFE, rubber and metal sealing components

5. How long is your delivery time?

Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

6.Do you provide samples ?

is it free or extra ? Yes, we could offer the sample for free charge but you need to pay the cost of freight.

 

7. what services can we provide?

Accepted Delivery Terms: FOB,CFR,CIF,EXW,FAS,CIP,FCA,Express Delivery;

Accepted Payment Currency:USD,EUR,JPY,CAD,HKD,CNY;

Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,PayPal,Western Union,Escrow; Language
Spoken:English,Chinese,Japanese

For more information, please contact us. We look CHINAMFG to your arrival

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Specific Safety Precautions When Working with Shaft Couplings

Working with shaft couplings involves handling rotating machinery and mechanical components. To ensure the safety of personnel and prevent accidents, specific safety precautions should be followed during installation, maintenance, and operation:

1. Lockout-Tagout (LOTO):

Prior to any work on machinery involving couplings, implement a lockout-tagout procedure to isolate the equipment from its power source. This ensures that the machinery cannot be accidentally energized during maintenance or repair, protecting workers from potential hazards.

2. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment (PPE), including safety goggles, gloves, and appropriate clothing, when working with shaft couplings. PPE helps protect against potential hazards such as flying debris, sharp edges, or contact with moving parts.

3. Proper Training and Supervision:

Only trained and authorized personnel should work with shaft couplings. Ensure that workers have the necessary knowledge and experience to handle the equipment safely. Adequate supervision may be required, especially for less-experienced personnel.

4. Inspection and Maintenance:

Regularly inspect shaft couplings and associated components for signs of wear, damage, or misalignment. Address any issues promptly to prevent equipment failure and potential accidents.

5. Follow Manufacturer’s Guidelines:

Adhere to the manufacturer’s instructions and guidelines for installation, operation, and maintenance of the specific coupling model. Improper use or deviation from recommended procedures may compromise safety and void warranties.

6. Avoid Overloading:

Do not exceed the torque and speed limits specified by the coupling manufacturer. Overloading a coupling can lead to premature failure and pose safety risks to operators and nearby equipment.

7. Shaft Guards and Enclosures:

Install appropriate guards and enclosures to prevent accidental contact with rotating shafts and couplings. These safety measures help reduce the risk of entanglement and injuries.

8. Zero Energy State:

Ensure that all stored energy in the equipment, such as compressed air or hydraulic pressure, is released and the equipment is in a zero energy state before starting work.

9. Avoid Loose Clothing and Jewelry:

Remove or secure loose clothing, jewelry, and other items that could get caught in moving parts.

10. Maintain a Clean Work Area:

Keep the work area clean and free from clutter to avoid tripping hazards and facilitate safe movement around the machinery.

By following these safety precautions, personnel can minimize the risks associated with working with shaft couplings and create a safer working environment for everyone involved.

“`shaft coupling

Temperature and Speed Limits for Different Shaft Coupling Types

The temperature and speed limits of shaft couplings vary depending on the materials and design of the coupling. Manufacturers provide specific guidelines and ratings for each coupling type. Below are general temperature and speed limits for some common shaft coupling types:

1. Elastomeric Couplings:

Elastomeric couplings, such as jaw couplings and tire couplings, typically have temperature limits ranging from -40°C to 100°C (-40°F to 212°F). The speed limits for elastomeric couplings are generally up to 5,000 RPM, but some designs may allow higher speeds.

2. Metallic Couplings:

Metallic couplings, like gear couplings and disc couplings, can handle a wider temperature range, typically from -50°C to 200°C (-58°F to 392°F). The speed limits for metallic couplings vary based on the size and design, but they can range from 3,000 RPM to over 10,000 RPM.

3. Grid Couplings:

Grid couplings have temperature limits similar to metallic couplings, ranging from -50°C to 200°C (-58°F to 392°F). The speed limits for grid couplings are typically in the range of 3,000 to 5,000 RPM.

4. Oldham Couplings:

Oldham couplings usually have temperature limits from -30°C to 100°C (-22°F to 212°F) and speed limits ranging from 1,000 to 5,000 RPM.

5. Beam Couplings:

Beam couplings generally have temperature limits from -40°C to 120°C (-40°F to 248°F) and speed limits between 5,000 to 10,000 RPM.

6. Fluid Couplings:

Fluid couplings are suitable for a wide range of temperatures, often from -50°C to 300°C (-58°F to 572°F). The speed limits depend on the size and design of the fluid coupling but can extend to several thousand RPM.

It’s important to note that these are general guidelines, and the actual temperature and speed limits may vary based on the specific coupling manufacturer, material quality, and application requirements. Always refer to the manufacturer’s documentation and technical specifications for accurate and up-to-date temperature and speed limits for a particular shaft coupling model.

“`shaft coupling

Can a Damaged Shaft Coupling Lead to Equipment Failure and Downtime?

Yes, a damaged shaft coupling can lead to equipment failure and downtime in mechanical power transmission systems. Shaft couplings play a critical role in connecting rotating shafts and transmitting power between them. When a coupling becomes damaged or fails to function properly, several negative consequences can arise:

1. Misalignment Issues:

A damaged coupling may no longer be able to compensate for misalignments between the connected shafts. Misalignment can cause excessive vibration, increased wear, and premature failure of bearings and other connected components. Over time, these issues can lead to equipment breakdown and unplanned downtime.

2. Vibration and Shock Loads:

Without the damping properties of a functional coupling, vibrations and shock loads from the driven equipment can transmit directly to the driving shaft and other parts of the system. Excessive vibrations can lead to fatigue failure, cracking, and damage to the equipment, resulting in reduced operational efficiency and increased downtime.

3. Overloading and Torque Transmission:

A damaged coupling may not effectively transmit the required torque between the driving and driven shafts. In applications where the coupling is a safety device (e.g., shear pin couplings), failure to disengage during overloading situations can lead to equipment overload and damage.

4. Increased Wear and Tear:

A damaged coupling can lead to increased wear on other parts of the system. Components such as bearings, seals, and gears may experience higher stress and wear, reducing their lifespan and increasing the likelihood of breakdowns.

5. Reduced System Reliability:

A functional shaft coupling contributes to the overall reliability of the mechanical system. A damaged coupling compromises this reliability, making the system more prone to failures and unplanned maintenance.

6. Downtime and Production Loss:

When a shaft coupling fails, it often results in unscheduled downtime for repairs or replacement. Downtime can be costly for industries that rely on continuous production processes and can lead to production losses and missed delivery deadlines.

7. Safety Hazards:

In certain applications, such as heavy machinery or industrial equipment, a damaged coupling can create safety hazards for workers and surrounding equipment. Sudden failures or uncontrolled movements may pose risks to personnel and property.

Regular inspection, maintenance, and prompt replacement of damaged shaft couplings are essential to prevent equipment failure, minimize downtime, and ensure safe and efficient operation of mechanical systems. It is crucial to address any signs of coupling wear or damage immediately to avoid potential catastrophic failures and costly disruptions to operations.

“`
China high quality CHINAMFG Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs Afn Bfn Ah Sh CF Cfn Df Dfn Zs-Dkm-Sh Zrs Zr Btan Sban Afn-Sb Special SD Shaft Coupling  China high quality CHINAMFG Flexible Jaw Couplings Standard Taper Clamping Sleeve Ring Hubs Afn Bfn Ah Sh CF Cfn Df Dfn Zs-Dkm-Sh Zrs Zr Btan Sban Afn-Sb Special SD Shaft Coupling
editor by CX 2024-01-09

China Standard CNC Spider Jaw Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings

Product Description

Product Description

DO NOT worry about PRICE, we are manufacturer.

 

DO NOT worry about QUALITY, we have 16 years experience.

 

DO NOT worry about AFTER-SALES, we are 24 hours online.

Features :

1. The main body is made of high strength aluminum alloy
2. Zero backlash, suitable for forward and reverse rotation
3.Colloid is made of polyurethane, which has good wear resistance
4.Oil resistance and electrical insulation, the middle elasticbody can absorb vibration
5. Compensate radial, angular and axial deviations
6. Removable design for easy installation
7. Tightening method of positioning screw

Suitable for a wide range of devices

    CNC lathes                                                Optical inspection equipment

                     Module slider                                                                 Servo motor

Company Profile

Certifications

 

Packaging & Shipping

All products will be well packed with standard export wooden case or
cartons.

Shafts packed with paper tube or plastic bag;
Linear guideways or lead screwswrapped with film or plastic bag;

Guarantee well protected against dampness,moisture, rust and shock.

 

Our Advantages

FAQ

Q1: Do you have a catalogue? Can you send me the catalogue to have a check of all your products?

A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.
 

Q2: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.

Q3 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.Just have to point out that ,it will cause some additional cost.

Q4: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.

Any requirements or question,Welcome to “Send” us an e-mail Now!
It’s our great honor to do services for you! You also can get the FREE SAMPLES soon.

shaft coupling

How to Select the Right Shaft Coupling for Specific Torque and Speed Requirements

Selecting the appropriate shaft coupling involves considering the specific torque and speed requirements of the application. Here’s a step-by-step guide to help you choose the right coupling:

1. Determine Torque and Speed:

Identify the torque and speed requirements of the application. Torque is the rotational force required to transmit power between the shafts, usually measured in Nm (Newton-meters) or lb-ft (pound-feet). Speed refers to the rotational speed of the shafts, typically measured in RPM (revolutions per minute).

2. Calculate Torque Capacity:

Check the torque capacity of various shaft couplings. Manufacturers provide torque ratings for each coupling type and size. Ensure that the selected coupling has a torque capacity that exceeds the application’s torque requirements.

3. Consider Misalignment:

If the application involves significant shaft misalignment due to thermal expansion, vibration, or other factors, consider flexible couplings with good misalignment compensation capabilities. Elastomeric or beam couplings are popular choices for such applications.

4. Assess Operating Speed:

For high-speed applications, choose couplings with high rotational speed ratings to avoid resonance issues and potential coupling failure. High-speed couplings may have specialized designs, such as disk or diaphragm couplings.

5. Evaluate Environmental Conditions:

If the coupling will operate in harsh environments with exposure to chemicals, moisture, or extreme temperatures, select couplings made from corrosion-resistant materials or with protective coatings.

6. Check Torsional Stiffness:

In applications requiring precision motion control, consider couplings with high torsional stiffness to minimize torsional backlash and maintain accurate positioning. Bellows or Oldham couplings are examples of couplings with low torsional backlash.

7. Size and Space Constraints:

Ensure that the selected coupling fits within the available space and aligns with the shaft dimensions. Be mindful of any installation limitations, especially in confined spaces or applications with limited radial clearance.

8. Consult Manufacturer’s Data:

Refer to the manufacturer’s catalogs and technical data sheets for detailed information on each coupling’s torque and speed ratings, misalignment capabilities, materials, and other relevant specifications.

9. Consider Cost and Maintenance:

Compare the costs and maintenance requirements of different couplings. While some couplings may have higher upfront costs, they could offer longer service life and reduced maintenance costs in the long run.

By following these steps and considering the specific torque and speed requirements of your application, you can select the right shaft coupling that will ensure efficient power transmission and reliable performance for your mechanical system.

“`shaft coupling

Real-World Examples of Shaft Coupling Applications in Different Industries

Shaft couplings play a crucial role in various industries by connecting rotating shafts and transmitting torque between them. Here are some real-world examples of shaft coupling applications in different industries:

1. Manufacturing Industry:

In manufacturing plants, shaft couplings are used in various equipment such as conveyor systems, pumps, compressors, and mixers. For example, in a conveyor system, shaft couplings connect the motor shaft to the conveyor belt, allowing efficient material handling and transportation.

2. Oil and Gas Industry:

The oil and gas industry utilizes shaft couplings in applications like drilling rigs, pumps, and generators. In drilling rigs, couplings connect the motor to the drill shaft, enabling the drilling process.

3. Marine Industry:

In the marine industry, shaft couplings are found in propulsion systems, water pumps, and winches. They connect the ship’s engine to the propeller shaft, providing the necessary torque for propulsion.

4. Power Generation:

Power plants use shaft couplings in turbines, generators, and cooling systems. For instance, in a steam turbine, couplings connect the turbine to the electrical generator, allowing the conversion of steam energy into electrical power.

5. Aerospace Industry:

Aerospace applications use shaft couplings in aircraft engines, landing gear systems, and auxiliary power units. Couplings enable power transmission between different components of the aircraft systems.

6. Automotive Industry:

In vehicles, shaft couplings are present in the drivetrain, steering systems, and transmission. For example, in a car’s transmission system, couplings connect the engine to the gearbox, enabling smooth gear changes and power transmission to the wheels.

7. Mining Industry:

The mining industry relies on shaft couplings in heavy-duty machinery such as crushers, conveyor belts, and pumps. Couplings connect motors to various mining equipment, facilitating material extraction and transportation.

8. Agriculture:

Agricultural machinery like tractors and harvesters use shaft couplings to connect the engine to implements such as plows, harvesters, and irrigation pumps.

These examples demonstrate the wide-ranging applications of shaft couplings across industries. In each case, the specific coupling type is chosen based on factors such as torque requirements, misalignment compensation, environmental conditions, and load characteristics to ensure reliable and efficient operation.

“`shaft coupling

Diagnosing and Fixing Common Issues with Shaft Couplings

Regular inspection and maintenance of shaft couplings are essential to detect and address common issues that may arise during operation. Here are steps to diagnose and fix some common coupling problems:

1. Abnormal Noise or Vibration:

If you notice unusual noise or excessive vibration during equipment operation, it may indicate misalignment, wear, or damage in the coupling. Check for any visible signs of damage, such as cracks or deformations, and inspect the coupling for proper alignment.

Diagnosis:

Use a vibration analysis tool to measure the vibration levels and identify the frequency of the abnormal vibrations. This can help pinpoint the source of the problem.

Fix:

If misalignment is the cause, adjust the coupling to achieve proper alignment between the shafts. Replace any damaged or worn coupling components, such as spiders or elastomeric inserts, as needed.

2. Excessive Heat:

Feeling excessive heat on the coupling during operation can indicate friction, improper lubrication, or overload conditions.

Diagnosis:

Inspect the coupling and surrounding components for signs of rubbing, lack of lubrication, or overloading.

Fix:

Ensure proper lubrication of the coupling, and check for any interference between the coupling and adjacent parts. Address any overloading issues by adjusting the equipment load or using a coupling with a higher torque capacity.

3. Shaft Movement:

If you observe axial or radial movement in the connected shafts, it may indicate wear or improper installation of the coupling.

Diagnosis:

Check the coupling’s set screws, keyways, or other fastening methods to ensure they are secure and not causing the shaft movement.

Fix:

If the coupling is worn or damaged, replace it with a new one. Ensure proper installation and use appropriate fastening methods to secure the coupling to the shafts.

4. Sheared Shear Pin:

In shear pin couplings, a sheared shear pin indicates overloading or shock loads that exceeded the coupling’s torque capacity.

Diagnosis:

Inspect the shear pin for damage or breakage.

Fix:

Replace the sheared shear pin with a new one of the correct specifications. Address any overloading issues or adjust the equipment to prevent future shearing.

5. Coupling Wear:

Regular wear is normal for couplings, but excessive wear may lead to decreased performance and increased misalignment.

Diagnosis:

Inspect the coupling components for signs of wear, such as worn elastomeric elements or damaged teeth.

Fix:

Replace the worn or damaged components with new ones of the appropriate specifications.

Remember, regular maintenance and periodic inspection are key to diagnosing issues early and preventing severe problems. Always follow the manufacturer’s recommendations for maintenance and replacement schedules to ensure the proper functioning and longevity of the shaft coupling.

“`
China Standard CNC Spider Jaw Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings  China Standard CNC Spider Jaw Coupling Diameter 20 Length 30high Precision Plum Flexible Shaft Couplings
editor by CX 2023-11-21

China Best Sales Cast Iron Mh Shaft Couplings for Electric Motor Flexible Jaw Spider Elastic Coupling Quick Release Rubber Coupling

Product Description

Product Description

COUPLINGS

HRC FCL Chain coupling GE L NM MH Torque limiter
HRC 70B FCL90 KC4012 GE14 L050 NM50 MH45 TL250-2
HRC 70F FCL100 KC4014 GE19 L070 NM67 MH55 TL250-1
HRC 70H FCL112 KC4016 GE24 L075 NM82 MH65 TL350-2
HRC 90B FCL125 KC5014 GE28 L090 NM97 MH80 TL350-1
HRC 90F FCL140 KC5016 GE38 L095 NM112 MH90 TL500-2
HRC 90H FCL160 KC6018 GE42 L099 NM128 MH115 TL500-1
HRC 110B FCL180 KC6571 GE48 L100 NM148 MH130 TL700-2
HRC 110F FCL200 KC6571 GE55 L110 NM168 MH145 TL700-1
HRC 110H FCL224 KC8018 GE65 L150 NM194 MH175  
HRC 130B FCL250 KC8571 GE75 L190 NM214 MH200  
HRC 130F FCL280 KC8571 GE90 L225      
HRC 130H FCL315 KC1571          
HRC 150B FCL355 KC12018          
HRC 150F FCL400 KC12571          
HRC 150H FCL450            
HRC 180B FCL560            
HRC 180F FCL630            
HRC 180H              
HRC 230B              
HRC 230F              
HRC 230H              
HRC 280B              
HRC 280F              
HRC 280H              

 

Catalogue

Workshop

   Lots of couplings in stock
 

 

FAQ

Q1: Are you trading company or manufacturer ?
A: We are factory.
 

Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days.
2.Production Lead-times: 30-45 days after order confirmed.

Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.

 

 

shaft coupling

Can Shaft Couplings Compensate for Angular, Parallel, and Axial Misalignments?

Yes, shaft couplings are designed to compensate for different types of misalignments between rotating shafts in mechanical power transmission systems. They can handle the following types of misalignments:

  • Angular Misalignment: This occurs when the shafts are not parallel and have an angle between them. Flexible couplings, such as elastomeric, beam, or Oldham couplings, can accommodate angular misalignments by allowing slight angular movement between the shafts while transmitting torque.
  • Parallel Misalignment: This happens when the shafts are not collinear, resulting in axial displacement. Flexible couplings with lateral flexibility, like elastomeric or bellows couplings, can handle parallel misalignment by allowing limited lateral movement between the shafts.
  • Radial Misalignment: Radial misalignment occurs when the shafts have lateral displacement but remain parallel. Flexible couplings, such as jaw or grid couplings, can absorb radial misalignment by permitting some lateral deflection while transmitting torque.

It is essential to note that while shaft couplings can compensate for misalignments to some extent, they do have their limits. The magnitude of misalignment they can handle depends on the type and design of the coupling. Exceeding the specified misalignment capabilities of a coupling can lead to premature wear, reduced efficiency, and possible coupling failure.

Therefore, when selecting a shaft coupling for an application, it is crucial to consider the expected misalignment and choose a coupling that can accommodate the anticipated misalignment range. Additionally, maintaining proper alignment through regular maintenance and periodic inspections is essential to ensure the coupling’s optimal performance and extend its service life.

“`shaft coupling

Real-World Examples of Shaft Coupling Applications in Different Industries

Shaft couplings play a crucial role in various industries by connecting rotating shafts and transmitting torque between them. Here are some real-world examples of shaft coupling applications in different industries:

1. Manufacturing Industry:

In manufacturing plants, shaft couplings are used in various equipment such as conveyor systems, pumps, compressors, and mixers. For example, in a conveyor system, shaft couplings connect the motor shaft to the conveyor belt, allowing efficient material handling and transportation.

2. Oil and Gas Industry:

The oil and gas industry utilizes shaft couplings in applications like drilling rigs, pumps, and generators. In drilling rigs, couplings connect the motor to the drill shaft, enabling the drilling process.

3. Marine Industry:

In the marine industry, shaft couplings are found in propulsion systems, water pumps, and winches. They connect the ship’s engine to the propeller shaft, providing the necessary torque for propulsion.

4. Power Generation:

Power plants use shaft couplings in turbines, generators, and cooling systems. For instance, in a steam turbine, couplings connect the turbine to the electrical generator, allowing the conversion of steam energy into electrical power.

5. Aerospace Industry:

Aerospace applications use shaft couplings in aircraft engines, landing gear systems, and auxiliary power units. Couplings enable power transmission between different components of the aircraft systems.

6. Automotive Industry:

In vehicles, shaft couplings are present in the drivetrain, steering systems, and transmission. For example, in a car’s transmission system, couplings connect the engine to the gearbox, enabling smooth gear changes and power transmission to the wheels.

7. Mining Industry:

The mining industry relies on shaft couplings in heavy-duty machinery such as crushers, conveyor belts, and pumps. Couplings connect motors to various mining equipment, facilitating material extraction and transportation.

8. Agriculture:

Agricultural machinery like tractors and harvesters use shaft couplings to connect the engine to implements such as plows, harvesters, and irrigation pumps.

These examples demonstrate the wide-ranging applications of shaft couplings across industries. In each case, the specific coupling type is chosen based on factors such as torque requirements, misalignment compensation, environmental conditions, and load characteristics to ensure reliable and efficient operation.

“`shaft coupling

Can a Damaged Shaft Coupling Lead to Equipment Failure and Downtime?

Yes, a damaged shaft coupling can lead to equipment failure and downtime in mechanical power transmission systems. Shaft couplings play a critical role in connecting rotating shafts and transmitting power between them. When a coupling becomes damaged or fails to function properly, several negative consequences can arise:

1. Misalignment Issues:

A damaged coupling may no longer be able to compensate for misalignments between the connected shafts. Misalignment can cause excessive vibration, increased wear, and premature failure of bearings and other connected components. Over time, these issues can lead to equipment breakdown and unplanned downtime.

2. Vibration and Shock Loads:

Without the damping properties of a functional coupling, vibrations and shock loads from the driven equipment can transmit directly to the driving shaft and other parts of the system. Excessive vibrations can lead to fatigue failure, cracking, and damage to the equipment, resulting in reduced operational efficiency and increased downtime.

3. Overloading and Torque Transmission:

A damaged coupling may not effectively transmit the required torque between the driving and driven shafts. In applications where the coupling is a safety device (e.g., shear pin couplings), failure to disengage during overloading situations can lead to equipment overload and damage.

4. Increased Wear and Tear:

A damaged coupling can lead to increased wear on other parts of the system. Components such as bearings, seals, and gears may experience higher stress and wear, reducing their lifespan and increasing the likelihood of breakdowns.

5. Reduced System Reliability:

A functional shaft coupling contributes to the overall reliability of the mechanical system. A damaged coupling compromises this reliability, making the system more prone to failures and unplanned maintenance.

6. Downtime and Production Loss:

When a shaft coupling fails, it often results in unscheduled downtime for repairs or replacement. Downtime can be costly for industries that rely on continuous production processes and can lead to production losses and missed delivery deadlines.

7. Safety Hazards:

In certain applications, such as heavy machinery or industrial equipment, a damaged coupling can create safety hazards for workers and surrounding equipment. Sudden failures or uncontrolled movements may pose risks to personnel and property.

Regular inspection, maintenance, and prompt replacement of damaged shaft couplings are essential to prevent equipment failure, minimize downtime, and ensure safe and efficient operation of mechanical systems. It is crucial to address any signs of coupling wear or damage immediately to avoid potential catastrophic failures and costly disruptions to operations.

“`
China Best Sales Cast Iron Mh Shaft Couplings for Electric Motor Flexible Jaw Spider Elastic Coupling Quick Release Rubber Coupling  China Best Sales Cast Iron Mh Shaft Couplings for Electric Motor Flexible Jaw Spider Elastic Coupling Quick Release Rubber Coupling
editor by CX 2023-11-07

China factory Durable Motor Shaft Coupling Flexible Couplings for Construction Passenger Hoist

Product Description

Durable Motor Shaft Coupling Flexible Couplings for Construction Passenger Hoist

Product Description

Plum-shaped flexible coupling consists of 2 prongs of the same shape with the coupling half and elastic components, the use of plum-shaped elastic element is placed between the 2 halves of the coupling prongs in order to achieve the 2 coupling halves connection. With a two-axis compensation relative offset , shock absorption, cushioning , small radial size , simple structure, no lubrication , high load capacity , easy maintenance, etc. , but replace the elastic element coupling halves need to move axially . Suitable for connecting 2 coaxial, frequent starting , low-speed , medium power transmission shaft lines require high reliability work site, not suitable for heavy load and axial dimensions after restricted , replace the elastic element of the difficulties the 2 axes site .

 

Model

Rated Torque

Tn

Allowable Rotation Speed

Bore Diameter

d1 , d2 , dz 

Bore Length

L, L1

Weight

  N.m r/min mm mm kg

CLSJ50

28

15000

10-24

22-38

1.00

CLSJ70

112

11000

12-38

27-60

2.50

CLSJ85

160

9000

16-38

30-60

3.42

CLSJ105

355

7250

18-42

30-84

5.15

CLSJ125

450

6000

20-55

38-84

10.1

CLSJ145

710

5250

25-65

44-107

13.1

CLSJ170

1250

4500

30-85

60-132

21.2

CLSJ200

2000

3750

35-95

60-142

33.0

CLSJ230

3150

3250

40-95

84-142

45.5

CLSJ260

5000

3000

45-125

84-172

75.2

CLSJ300

7100

2500

60-140

108-172

99.2

CLSJ360

12500

2150

60-150

107-212

148.1

CLSJ400

14000

1900

80-160

132-242

197.5

why choose our product

Cheaper price than CZPT brands, good quality.
 

Features:

1. The intermediate elastomeric coupler
2. Can absorb the vibration , compensate the radial , angular and axial misalignment
3. Anti- oil and electrical insulation
4. clockwise and counterclockwise rotation characteristics are identical
5. Locate the screws

Certifications

Company Profile

FAQ

1. What are your main products?
We produce Construction Hoist (also called construction elevator, construction lift) and spare parts of it.

2. Are all Construction Hoist the same from all Vendors & Manufacturers?
Our High rise building construction hoist with VFD for lifting materials and passengers have exported to Europe, Middle and southern America, most of Asia, and some countries from Africa, about 50 countries. We can well match European standards, Russia standards and America standards. We have technology for develope new design ability and we support many customer with good solutions to solve their construction site special vertical access problems.

3. Do your products have some certificates?
Yes. Our Construction Hoist have passed CE ,ISO  Certificates.

4. What are the payment terms and the delivery time?
Payment terms are T/T and LC. We will ship the cargo within 7-21 days after receiving the 30% deposit.

5. Are you manufacturer or the trader?
We are manufacturer with 17 years maker experiences, have advanced production line and inspection device. Our Research and development team have got many praise from customers.

6. Will you develop distributor and sole agent?
Yes, should you have any interest to be our distributor and agent, please let us know in any ways. Sole agent is available depend on the sales turnover.

7. Where do you ship to and what countries have you done business in?
We provide quick and efficient shipping to countries all over the world from HangZhou port or other China port.
We have done business with customers in many countries, such as Mexico, Brazil, Korea, Malaysia, Thailand, India, Vietnam, Indonesia, UAE, Qatar, Kuwait,Saudi Arabia etc.

 

shaft coupling

How to Select the Right Shaft Coupling for Specific Torque and Speed Requirements

Selecting the appropriate shaft coupling involves considering the specific torque and speed requirements of the application. Here’s a step-by-step guide to help you choose the right coupling:

1. Determine Torque and Speed:

Identify the torque and speed requirements of the application. Torque is the rotational force required to transmit power between the shafts, usually measured in Nm (Newton-meters) or lb-ft (pound-feet). Speed refers to the rotational speed of the shafts, typically measured in RPM (revolutions per minute).

2. Calculate Torque Capacity:

Check the torque capacity of various shaft couplings. Manufacturers provide torque ratings for each coupling type and size. Ensure that the selected coupling has a torque capacity that exceeds the application’s torque requirements.

3. Consider Misalignment:

If the application involves significant shaft misalignment due to thermal expansion, vibration, or other factors, consider flexible couplings with good misalignment compensation capabilities. Elastomeric or beam couplings are popular choices for such applications.

4. Assess Operating Speed:

For high-speed applications, choose couplings with high rotational speed ratings to avoid resonance issues and potential coupling failure. High-speed couplings may have specialized designs, such as disk or diaphragm couplings.

5. Evaluate Environmental Conditions:

If the coupling will operate in harsh environments with exposure to chemicals, moisture, or extreme temperatures, select couplings made from corrosion-resistant materials or with protective coatings.

6. Check Torsional Stiffness:

In applications requiring precision motion control, consider couplings with high torsional stiffness to minimize torsional backlash and maintain accurate positioning. Bellows or Oldham couplings are examples of couplings with low torsional backlash.

7. Size and Space Constraints:

Ensure that the selected coupling fits within the available space and aligns with the shaft dimensions. Be mindful of any installation limitations, especially in confined spaces or applications with limited radial clearance.

8. Consult Manufacturer’s Data:

Refer to the manufacturer’s catalogs and technical data sheets for detailed information on each coupling’s torque and speed ratings, misalignment capabilities, materials, and other relevant specifications.

9. Consider Cost and Maintenance:

Compare the costs and maintenance requirements of different couplings. While some couplings may have higher upfront costs, they could offer longer service life and reduced maintenance costs in the long run.

By following these steps and considering the specific torque and speed requirements of your application, you can select the right shaft coupling that will ensure efficient power transmission and reliable performance for your mechanical system.

“`shaft coupling

Real-World Examples of Shaft Coupling Applications in Different Industries

Shaft couplings play a crucial role in various industries by connecting rotating shafts and transmitting torque between them. Here are some real-world examples of shaft coupling applications in different industries:

1. Manufacturing Industry:

In manufacturing plants, shaft couplings are used in various equipment such as conveyor systems, pumps, compressors, and mixers. For example, in a conveyor system, shaft couplings connect the motor shaft to the conveyor belt, allowing efficient material handling and transportation.

2. Oil and Gas Industry:

The oil and gas industry utilizes shaft couplings in applications like drilling rigs, pumps, and generators. In drilling rigs, couplings connect the motor to the drill shaft, enabling the drilling process.

3. Marine Industry:

In the marine industry, shaft couplings are found in propulsion systems, water pumps, and winches. They connect the ship’s engine to the propeller shaft, providing the necessary torque for propulsion.

4. Power Generation:

Power plants use shaft couplings in turbines, generators, and cooling systems. For instance, in a steam turbine, couplings connect the turbine to the electrical generator, allowing the conversion of steam energy into electrical power.

5. Aerospace Industry:

Aerospace applications use shaft couplings in aircraft engines, landing gear systems, and auxiliary power units. Couplings enable power transmission between different components of the aircraft systems.

6. Automotive Industry:

In vehicles, shaft couplings are present in the drivetrain, steering systems, and transmission. For example, in a car’s transmission system, couplings connect the engine to the gearbox, enabling smooth gear changes and power transmission to the wheels.

7. Mining Industry:

The mining industry relies on shaft couplings in heavy-duty machinery such as crushers, conveyor belts, and pumps. Couplings connect motors to various mining equipment, facilitating material extraction and transportation.

8. Agriculture:

Agricultural machinery like tractors and harvesters use shaft couplings to connect the engine to implements such as plows, harvesters, and irrigation pumps.

These examples demonstrate the wide-ranging applications of shaft couplings across industries. In each case, the specific coupling type is chosen based on factors such as torque requirements, misalignment compensation, environmental conditions, and load characteristics to ensure reliable and efficient operation.

“`shaft coupling

Best Practices for Installing a Shaft Coupling for Optimal Performance

Proper installation of a shaft coupling is crucial for ensuring optimal performance and preventing premature wear or failure. Follow these best practices to install a shaft coupling correctly:

1. Shaft Alignment:

Ensure that both the driving and driven shafts are properly aligned before installing the coupling. Misalignment can lead to increased stress on the coupling and other connected components, reducing efficiency and causing premature wear. Use alignment tools, such as dial indicators or laser alignment systems, to achieve accurate shaft alignment.

2. Cleanliness:

Before installation, clean the shaft ends and the coupling bore thoroughly. Remove any dirt, debris, or residue that could interfere with the coupling’s fit or cause misalignment.

3. Lubrication:

Apply the recommended lubricant to the coupling’s contact surfaces, such as the bore and shaft ends. Proper lubrication ensures smooth installation and reduces friction during operation.

4. Correct Fit:

Ensure that the coupling is the correct size and type for the application. Use couplings with the appropriate torque and speed ratings to match the equipment’s requirements.

5. Fastening:

Use the recommended fastening methods, such as set screws or keyways, to securely attach the coupling to the shafts. Make sure the fasteners are tightened to the manufacturer’s specifications to prevent loosening during operation.

6. Spacer or Adapter:

If required, use a spacer or adapter to properly position the coupling on the shafts and maintain the desired distance between the driving and driven components.

7. Avoid Shaft Damage:

Be careful during installation to avoid damaging the shaft ends, especially when using set screws or other fastening methods. Shaft damage can lead to stress concentrations and eventual failure.

8. Check Runout:

After installation, check the coupling’s runout using a dial indicator to ensure that it rotates smoothly and without wobbling. Excessive runout can indicate misalignment or improper fit.

9. Periodic Inspection:

Regularly inspect the coupling and its components for signs of wear, misalignment, or damage. Perform routine maintenance as recommended by the manufacturer to prevent issues from worsening over time.

10. Follow Manufacturer’s Guidelines:

Always follow the manufacturer’s installation instructions and guidelines. Different types of couplings may have specific installation requirements that need to be adhered to for optimal performance and safety.

By following these best practices, you can ensure that your shaft coupling is installed correctly, maximizing its efficiency and reliability in your mechanical power transmission system.

“`
China factory Durable Motor Shaft Coupling Flexible Couplings for Construction Passenger Hoist  China factory Durable Motor Shaft Coupling Flexible Couplings for Construction Passenger Hoist
editor by CX 2023-08-15